
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

Effective techniques for detecting and attributing
cyber criminals
Linfeng Zhang
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Zhang, Linfeng, "Effective techniques for detecting and attributing cyber criminals" (2008). Graduate Theses and Dissertations. 11953.
https://lib.dr.iastate.edu/etd/11953

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11953&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F11953&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11953?utm_source=lib.dr.iastate.edu%2Fetd%2F11953&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Effective techniques for detecting and attributing cyber criminals

by

Linfeng Zhang

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Yong Guan, Major Professor

Thomas E Daniels
Julie A Dickerson

Douglas W Jacobson
Arun K Somani
Johnny S Wong

Iowa State University

Ames, Iowa

2008

Copyright c© Linfeng Zhang, 2008. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my wife Danhui without whose support I would not

have been able to complete this work. I would also like to thank my mother Hui, my father

Chongtao, my father-in-law Renjie, my mother-in-law Shaohua Chen, my brothers Xuefeng,

Yunfeng and their families, for their endless love.

And, to my lovely son, Ryan.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

ACKNOWLEDGEMENTS . x

ABSTRACT . xii

CHAPTER 1. OVERVIEW . 1

1.1 Introduction . 1

1.2 A Motivating Scenario . 2

1.3 Objectives . 4

1.3.1 Forensics-Sound Attack Monitoring and Traceback Techniques 4

1.3.2 Forensics-Sound Online Fraud Detection Techniques 7

1.4 Contributions . 8

1.5 Dissertation Organization . 10

CHAPTER 2. LITERATURE REVIEW . 11

2.1 Data Processing over Data Stream Models . 11

2.1.1 Variance Estimation . 11

2.1.2 Frequency Estimation . 12

2.1.3 Geometric Estimation . 15

2.2 Attack Traceback . 17

2.2.1 Stepping Stone Attack Attribution . 17

2.2.2 IP Traceback . 20

2.3 Online Fraud Detection . 24

www.manaraa.com

iv

2.3.1 Duplicate Detection . 24

2.3.2 Online Advertising Fraud Detection . 24

CHAPTER 3. RESEARCH IN ATTACK ATTRIBUTION PART I: MON-

ITORING TECHNIQUES . 26

3.1 Variance Estimation over Sliding Windows . 26

3.1.1 Introduction . 26

3.1.2 Algorithm . 29

3.1.3 Conclusions . 46

3.2 Frequency Estimation over Sliding Windows . 46

3.2.1 Introduction . 46

3.2.2 SNAPSHOT Algorithms . 49

3.2.3 Experimental Evaluation . 61

3.2.4 Extensions . 64

3.2.5 Conclusions . 66

3.3 Geometric Estimation over Sliding Windows . 66

3.3.1 Introduction . 66

3.3.2 Diameter Algorithm . 70

3.3.3 Convex Hull Estimation . 76

3.3.4 Skyline Algorithm . 79

3.3.5 Conclusions . 85

CHAPTER 4. RESEARCH IN ATTACK ATTRIBUTION PART II: TRACE-

BACK TECHNIQUES . 86

4.1 Stepping Stone Attack Attribution . 86

4.1.1 Introduction . 86

4.1.2 Problem Definition . 87

4.1.3 Our Schemes . 88

4.1.4 Experimental Evaluation . 98

4.1.5 Conclusion . 103

www.manaraa.com

v

4.2 Topology-aware Single Packet Attack Traceback 104

4.2.1 Introduction . 104

4.2.2 Problems and Goals . 106

4.2.3 System Description . 109

4.2.4 Theoretical Analysis and Experimental Evaluation 118

4.2.5 Further Discussions . 125

4.2.6 Conclusion . 129

CHAPTER 5. RESEARCH IN ONLINE FRAUD DETECTION 130

5.1 Introduction . 130

5.1.1 Motivation . 131

5.1.2 Decaying Window Models . 134

5.1.3 Problem Statement . 135

5.1.4 Our Contributions . 136

5.2 Detecting Duplicates over Jumping Windows Using Group Bloom Filters . . . 137

5.2.1 GBF Algorithm Description . 137

5.2.2 Theoretical Analysis . 140

5.2.3 Comparison with Previous Work . 143

5.3 Detecting Duplicates over Sliding Windows Using Timing Bloom Filters 144

5.3.1 TBF Algorithm Description . 145

5.3.2 Theoretical Analysis . 149

5.4 Experimental Evaluation . 150

5.5 Conclusions . 152

CHAPTER 6. SUMMARY . 153

6.1 Conclusion . 153

6.2 Future Work . 154

6.2.1 Data Stream Processing . 154

6.2.2 Attack Traceback . 155

6.2.3 Online Fraud Detection . 156

www.manaraa.com

vi

CHAPTER BIBLIOGRAPHY . 157

www.manaraa.com

vii

LIST OF TABLES

Table 3.1 Space Requirement . 64

Table 4.1 Previous Schemes’ Assumptions . 88

Table 4.2 Parameters Set . 98

Table 4.3 Bijection Between K = 3 Bloom Filters and 2-bit Table 118

Table 4.4 Distribution of Internet Routers’ Upstream Degrees 127

www.manaraa.com

viii

LIST OF FIGURES

Figure 1.1 A Motivating Scenario . 2

Figure 3.1 Algorithm Description . 31

Figure 3.2 An Illustration of the Buckets . 32

Figure 3.3 An Illustration of the Buckets and Windows 36

Figure 3.4 Snapshot-Basic Algorithm Description 50

Figure 3.5 An Example Data Stream . 51

Figure 3.6 Example Item List when Window Slides in Snapshot-Basic. 51

Figure 3.7 Example Hash Table when Window Slides in Snapshot-Advanced. . 51

Figure 3.8 Example Partial Snapshot List when Window Slides in Snapshot-

Advanced. 52

Figure 3.9 Snapshot-Advanced Algorithm Description 58

Figure 3.10 Packet Number Distribution. 62

Figure 3.11 Experimental Results (N = 1, 000, 000. ε = 0.001) 63

Figure 3.12 Running Time . 65

Figure 3.13 An Example of How Refine Process Works 73

Figure 3.14 Example of H, Ĥ, H1 and H2 in Two-Dimension 76

Figure 3.15 Example of Ĥ and H1 in Three-Dimension 78

Figure 3.16 Example of Restricted Zones and How Refine Works in Two-Dimension 80

Figure 3.17 Example Virtual Zones in Two-Dimension 83

Figure 3.18 Example Virtual Zones in Two-Dimension 85

Figure 4.1 Bounds of S-I and S-II . 92

www.manaraa.com

ix

Figure 4.2 Packet Rate Distribution . 99

Figure 4.3 Scenario 1 with Different Delay Perturbations 100

Figure 4.4 Scenario 2 with Different Chaff . 101

Figure 4.5 Scenario 1 with Different Number of Original Packets 102

Figure 4.6 Scenario 2 with Different Number of Original Packets 102

Figure 4.7 Router’s Behaviors when Receiving a Packet 112

Figure 4.8 Router’s Behaviors when Receiving a Query Message 112

Figure 4.9 k-adaptive Procedure . 117

Figure 4.10 Tree Structure of Predecessors . 120

Figure 4.11 Experimental Results . 122

Figure 4.12 False Positive Rate Comparison . 125

Figure 5.1 GBF Algorithm Description . 139

Figure 5.2 An Example of GBF Algorithm . 140

Figure 5.3 Comparison Between Previous Algorithm and GBF Algorithm 144

Figure 5.4 TBF Algorithm Description . 147

Figure 5.5 An Example of TBF Algorithm . 148

Figure 5.6 False Positive Rate of GBF and TBF Algorithm over Sliding Windows 150

www.manaraa.com

x

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. First and foremost, I

am deeply grateful to my advisor, Dr. Yong Guan. Without his knowledge, perceptiveness,

patience, guidance and support, I would have never finished my thesis. His insights and words

of encouragement have often inspired me and renewed my hopes for completing my graduate

education. During the long rejection-rejection-· · · -acceptance circles of my publications, he

always encouraged me, and gave me enough confidence to not give up. I would remember the

moments when we bore the failures together and finally shared the successes for ever. I would

also remember his advices not only to my research but also to my life and career.

I would like to thank Dr. Thomas Daniels and Dr. Julie A Dickerson for their invaluable

guidance and advices when I was working on the Advanced Attack Attribution project. I would

also like to thank my other committee members for their efforts and contributions to this work:

Dr. Douglas W Jacobson, Dr. Arun K Somani and Dr. Johnny S Wong. Their suggestions

inspired me and improved the quality of my thesis. I would additionally like to thank all the

lecturers in Department of Electrical and Computer Engineering and other departments, from

whom I learnt a lot. Also, many thanks to Mrs. Pamela J Myers and other department staffs

for their help in last five years.

I would like to thank all my labmates and friends at Iowa State University. I am only able

to list a few here: Su Chang, Bryan Ellingson, Alan Johnson, Yang Liu, Wale Martins, Yanlin

Peng, Anthony G. Persaud, Yongping Tang, Wei Wang, Yawen Wei, Jianqiang Xin and Zhen

Yu.

I appreciate that all of you provided me a wonderful life in Ames, Iowa between August

www.manaraa.com

xi

2003 and December 2008. I would remember your faces, your words, and your deeds, deeply

and gratefully.

This work was partially supported by NSF under grants No. CNS-0644238, CNS-0626822,

and DUE-0313837, ARDA under contract number NBCHC030107, and Carver Trust Founda-

tion.

www.manaraa.com

xii

ABSTRACT

With the phenomenal growth of the Internet, more and more people enjoy and depend on

the convenience of its provided services. Unfortunately, the number of network-based attacks

is also increasing very quickly. More and more fraud activities appear in online advertising

networks and online auction systems. Network attackers can easily hide their identities through

IP spoofing, stepping stones, network address translators, Mobile IP or other ways, and thereby

reduce the chance of being captured. The current IP network infrastructure lacks measures

and cannot effectively deter and identify motivated and well-equipped attackers. Therefore,

innovative traceback schemes are required to attribute the real attackers. By the way, network

traffic always comes with high rate in distributed format without obvious beginning and ending.

These properties make network traffic much different compared with traditional data sets, and

data stream model is more feasible to analyze network traffic and detect anomaly and attacks.

In this dissertation, we design effective techniques for detecting and attributing cyber crim-

inals. We consider two kinds of fundamental techniques: forensics-sound attack monitoring

and traceback, and forensics-sound online fraud detection. The contributions of our research

are as follows: We propose several innovative algorithms which answer some open problems

in fundamental statistics estimation over sliding windows. Those algorithms can be used to

detect anomaly and attacks in networks. We also propose efficient and effective algorithms

which can trace back stepping stone attacks and single packet attacks. Streaming algorithms

are presented to detect click fraud in pay-per-click streams of online advertising networks.

www.manaraa.com

1

CHAPTER 1. OVERVIEW

1.1 Introduction

With the phenomenal growth of the Internet, more and more people enjoy and depend on

the convenience of its provided services. The Internet has spread rapidly to almost all over the

world. Up to June 2008, the Internet has distributed to over 233 countries and world regions,

and has more than 1.46 billion users [1]. Unfortunately, the wide use of computer and Internet

also has opened doors to cyber attackers. There are different kinds of attacks that an end

user of a computer or Internet has to face. For instance, there may be various viruses on the

hard disk, there may be several backdoors opened in the operating system, and there may be

a lot of phishing e-mails in his/her mailbox. Also, more and more fraud activities appear in

online advertising networks and online auction systems. According to the 2008 CSI computer

crime & security survey by Computer Security Institute (CSI) [91], cyber attacks cause a lot of

money losses each year. Network attackers can easily hide their identities through IP spoofing,

stepping stones, network address translators (NATs), Mobile IP or other ways, and thereby

reduce the chance of being captured. The current IP network infrastructure lacks measures

and cannot effectively deter and identify motivated and well-equipped attackers. Therefore,

innovative traceback schemes are required to attribute the real attackers. By the way, network

traffic always comes with high rate in distributed format without obvious beginning and ending.

These properties make network traffic much different compared with traditional data sets, and

data stream model is more feasible to analyze network traffic.

In our research, we study and design efficient and effective techniques for detecting and

attributing cyber criminals. We generally consider two kinds of fundamental techniques:

www.manaraa.com

2

forensics-sound1 attack monitoring and traceback, and forensics-sound online fraud detection.

We hope that our work may serve as fundamental components which can be widely applied in

network security and many other domains.

1.2 A Motivating Scenario

As shown in Figure 1.1, the Internet consists of many autonomous systems (ASes). To

defend potential attacks, many monitors are distributed in the network. They generate a lot

of log information which will be sent to one or more network operations centers (NOCs).

log ……
l

NOC

DDoS Attacks
Spam emails

…………log ……
…………

log ……
…………

log ……
…………Single Packet

Attack

Spam emails
Click fraud
...

AS1 AS2Attack Scope

Variance
Frequency

Stepping
Stones

AS1 AS2

AS3

Figure 1.1 A Motivating Scenario

Suppose that a host is under a Distributed Denial-of-Service (DDoS) attack. If we take a

look at the corresponding log information, its statistics, such as variance and frequency, may

change a lot compared with its normal values. Also, suppose that a worm is spreading over the
1“Forensics-sound” means acceptable effectiveness (correctness and error bound) and efficiency (space and

time).

www.manaraa.com

3

Internet, and many machines are affected. The NOC may require a worm spreading map, so

that it can use the geometry information to take some countermeasures, for instance, shutting

down some affected machines, or requiring the corresponding monitors with in the affected

scope to report more detailed information.

There are many kinds of attacks in the Internet. Consider that there is an attacker which

launches attacks through several intermediate hosts instead of connecting to the victim directly.

This kind of attacks is called stepping stone attack. Such an indirect attack is difficult to

attribute. Stepping stone attacks are interactive attacks which generate a lot of IP packets.

On the contrary, some attacks can be finished within a well-targeted packet, which are called

single packet attacks.

Furthermore, the final purposes of the attackers to intrude and control the others’ machines

are not only for fun, but also to do many malicious tasks. They can control thousands or even

millions of bots to launch DDoS attacks, to send out spam emails, to generate fraudulent clicks

or eBay transactions to earn money, etc.

To defend such an attack scenario, several potential queries should be answered:

• Is there any anomaly in the network, in terms of frequency, variance, etc.?

• Can we find the geometry scope of the attackers or affected hosts?

• If the attackers are several hops away, how to attribute them?

• If the attacks are finished within one packet, how to trace back the attackers?

• How to detect fraudulent clicks?

If we like, many other queries or requirements can be listed here. We are interested in the

queries within two categories:

(1) How to analyze network traffic to detect anomaly and attacks, and trace back to the

real attackers?

(2) How to defend the fraud activities from attackers?

www.manaraa.com

4

1.3 Objectives

In our research, we propose to design efficient and effective techniques for attributing and

defending against cyber criminals. Our research goals are

• To detect network anomaly and attacks, and trace back attacks to real sources.

• To defend online fraud activities.

To achieve these goals, we studied two kinds of fundamental techniques as follows.

1.3.1 Forensics-Sound Attack Monitoring and Traceback Techniques

1.3.1.1 Attack Monitoring Techniques

To monitor and detect anomaly and attacks in networks, we need to process a lot of data

gathered in the networks, such as logs and other information. If we treat network traffic as

a data set, and use traditional database system techniques to analyze it, we really can detect

many anomalies and attacks. However, network traffic has its own properties which make it

much different compared with traditional data sets.

(1) Network traffic always increases much faster than the development of computing tech-

nology (CPU, storage devices, etc).

It means that to analyze the network traffic, we always meet the problem of high rate/volume

data vs. limited processing resources. In each second, high rate network traffic is generated,

and a lot of logged activities wait to be analyzed. In many cases it is impossible to record all

traffic for later analysis with limited resources.

(2) Network traffic usually has no obvious beginning and ending.

It implies that it is improper to store data first and analyze later, or to cut data into pieces

and analyze them separately.

(3) Current status of network traffic is usually more important than previous status.

It implies that when analyzing network traffic, the data with different timestampes should

have different weights.

(4) Network traffic should be analyzed in online mode to guarantee quick response.

www.manaraa.com

5

If we have the capabilities to analyze the network traffic in online mode, we can identify the

ongoing attacks and thus take countermeasures to eliminate or mitigate the potential damages.

(5) The analysis results should be precise enough.

If there are a lot of errors in the network analysis results, then the network will be filled

with false alarms, which are very annoying and may disturb the normal daily operations of the

network.

Therefore, analyzing network traffic should have a different model compared with the pro-

cessing of traditional data sets. Data stream model is introduced in 1998 [56], which has

received considerable attention [18, 82]. In data stream model, the assumption is that the

input data is continuous with high rate such that the processing system has no enough space

to hold them in memory and analyze them later. That is, the interested characteristics must

be gathered with only one pass. Therefore, an algorithm over data stream model is desired to

have all or part of the following capabilities:

(1) Polynomial space requirement with respect to the size of the input data stream.

(2) One pass processing.

(3) More weight on recent data.

(4) Short processing time for each input element, and short computational time to answer

queries.

(5) Error-bounded.

To put more weight on recent data, sliding window model is a general time decay model for

data streams, which only considers the most recent N elements evenly, and discards the influ-

ence of all older elements, where N is the window size. Most available algorithms/techniques

in database system are not perfectly qualified in data stream model. In other words, analyzing

network traffic using the same techniques as analyzing a typical database will meet problems,

and new techniques are required.

Variance estimation can be useful in many different research fields, e.g., network monitor-

ing, intrusion detection, financial monitoring, weather forecast, disaster forecast, etc. Variance

is often related to anomaly and status change which is a powerful measure for anomaly detec-

www.manaraa.com

6

tion and forecast. Frequency is a fundamental characteristics in many database applications.

Furthermore, it has many applications in network security. For instance, it can be used to solve

the heavy-hitter and super-spreader problem. Here, a heavy-hitter means a source IP which

sends out a lot of packets; A super-spreader is a source IP which links to a lot of destinations

and may be a network scanner. Although some solutions have been proposed, there are still

gaps between the bounds of available algorithms and theoretical lower bounds, in terms of

space requirement or processing time. Consequently, our goal is to find optimal variance and

frequency estimation algorithms over sliding windows.

Geometric computation has many applications, such as computer graphics, computer-

aided design and manufacturing (CAD/CAM), geographic information systems (GIS), inte-

grated circuit geometry design and verification, etc. Also, geometric computation becomes

an important issue in network security after distributed networks (e.g., sensor networks) are

widely researched and deployed. For instance, in the early age of worm propagation, after re-

ceiving thousands of alarms from distributed network monitors, a geometric map is necessary

to show which regions have been affected so that countermeasures can be executed to interrupt

the worm propagation. Diameter can scale how far the worm has propagated, and convex

hull can reflect the boundary of the affected hosts. Furthermore, geometric computation is

required not only in the domain of geometric coordinates, but also in many other fields in

network security. For instance, network logs contain a lot of hosts which volume, connection

numbers, etc. are recorded, and we want to analyze and detect the dominant hosts in some

terms which should have more chance to be attackers. The skyline calculation can be applied

to this purpose. Our goal is to provide efficient geometric computation algorithms over data

stream models.

1.3.1.2 Attack Traceback Techniques

Network-based attackers can easily hide their identities through IP spoofing, stepping

stones, network address translators (NATs), Mobile IP or other ways, and thereby reduce

the chance of being captured. However, the current IP network infrastructure cannot effec-

www.manaraa.com

7

tively deter and identify motivated and well-equipped attackers. Therefore, it is desirable to

design effective and efficient traceback systems to attribute attackers and help reconstruct cy-

ber crime scenes. There are many forms of network-based attacks. In our research, we consider

two types of network attacks: stepping stone attacks and single packet attacks.

(1) Stepping Stone Attack Traceback

Network based attackers often relay attacks through intermediary hosts (i.e., stepping

stones) to evade detection. In addition, attackers make detection more difficult by encrypting

attack traffic and introducing delay and chaff perturbations into stepping stone connections.

Several approaches have been proposed to detect stepping stone attacks. However, none of

them performs effectively when delay and chaff perturbations exist simultaneously. In our

work, we propose correlation algorithms to efficiently and effectively attribute stepping stone

attacks when delay and chaff perturbations exist simultaneously.

(2) Single Packet Attack IP Traceback

While most DDoS attacks are conducted by flooding networks with large amounts of traffic,

there are attacks which require significantly smaller packet flows. Some attacks (e.g., Teardrop)

can even succeed by using only one well-targeted packet. Although several IP traceback systems

have been designed to trace back single packet attacks, their effectiveness is restrained by high

false positive rates. In this work, we design a Bloom filter-based topology-aware single packet

IP traceback system which has reasonable space requirement and fast processing speed, and

simultaneously has forensics-sound tracing capabilities.

1.3.2 Forensics-Sound Online Fraud Detection Techniques

With the rapid growth of the Internet, online advertisement plays a more and more im-

portant role in the advertising market. One of the current and widely used revenue models

for online advertising involves charging for each click based on the popularity of keywords and

the number of competing advertisers. This pay-per-click model leaves room for individuals or

rival companies to generate false clicks (i.e., click fraud), which pose serious problems to the

development of healthy online advertising market.

www.manaraa.com

8

To detect click fraud, an important issue is to detect duplicate clicks over decaying window

models, such as jumping windows and sliding windows. Decaying window models can be

very helpful in defining and determining click fraud. However, although there are available

algorithms to detect duplicates, there is still a lack of practical and effective solutions to detect

click fraud in pay-per-click streams over decaying window models. We propose to address the

problem of detecting duplicate clicks in pay-per-click streams.

Generally speaking, we hope that our proposed work can serve as fundamental components

which can be widely utilized in network security and many other domains. These forensics-

sound attack monitoring techniques, traceback techniques, and fraud detection techniques

can be integrated together to develop a holistic approach in detecting and attributing at-

tacks/criminals such as DDoS, botnet, click-fraud, on-line auction fraudsters, etc.

1.4 Contributions

The contributions of our research are as follows:

(1) We propose several innovative algorithms which answer some open problems in fun-

damental statistics estimation over sliding windows. Those algorithms can be used to detect

anomaly and attacks in networks. We also propose efficient and effective algorithms which can

trace back stepping stone attacks and single packet attacks.

• We address the problem of maintaining ε-approximate variance of data streams over

sliding windows. To our knowledge, the best existing algorithm requires O(1
ε2

logN)

space, though the lower bound for this problem is Ω(1
ε logN). We propose the first ε-

approximation algorithm to this problem that is optimal in both space and worst case

time. Our algorithm requires O(1
ε logN) space. Furthermore, its running time is O(1)

in worst case.

• We study the problem of estimating ε-approximate frequency in data streams over slid-

ing windows. We propose the first efficient deterministic algorithm which can achieve

O(1
ε) space requirement and only need O(1) running time to process each item in the

www.manaraa.com

9

data stream and to answer a query. We present two novel deterministic algorithms,

Snapshot-Basic and Snapshot-Advanced, which need O(1
ε) space. Furthermore,

Snapshot-Advanced only needs O(1) running time. Both theoretical and experimen-

tal analysis show that our algorithms can be adopted to estimate item frequencies in

sliding windows over on-line high-rate data streams with the error guarantee. In ad-

dition, as an application of our algorithms, we extend them to solve the problem of

estimating flow size.

• we study the problem of estimating ε-approximate diameter, convex hull and skyline in

data streams over sliding windows. To our knowledge, the best existing algorithm for

the problem of estimating ε-approximate diameter in data streams over sliding windows

requires O((1
ε)

d+1
2 log R

ε) space [28], where R is the ratio between the largest distance

and the smallest distance of a pair of points, and d is the dimension. We first present

an improved algorithm which only requires O((1
ε)

d+1
2 logR) space. We then extend our

algorithm to solve convex hull estimation problem over sliding windows, and prove that

the exact diameter algorithm can get the ε-approximate convex hull estimation directly.

Finally, we propose a novel algorithm to estimate skyline which requires O(1
εd

log εR)

space.

• We propose and analyze algorithms which represent that stepping stone attackers cannot

always evade detection only by adding limited delay and independent chaff perturbations.

We provide the upper bounds on the number of packets needed to confidently detect step-

ping stone connections from non-stepping stone connections with any given probability

of false attribution. We compare our algorithms with previous ones and the experimental

results show that our algorithms are more effective in detecting stepping stone attacks

in some scenarios.

• We propose a topology-aware single packet IP traceback system, namely TOPO. We uti-

lize router’s local topology information, i.e., its immediate predecessor information. Our

performance analysis shows that TOPO can reduce the number and scope of unnecessary

www.manaraa.com

10

queries, and significantly decrease false attributions. Furthermore, to improve the prac-

ticability of Bloom filter-based IP traceback systems, we design TOPO to allow partial

deployment while maintaining its traceback capability. When Bloom filters are used, it

is difficult to decide their optimal control parameters a priori. We design a k-adaptive

mechanism which can dynamically adjust parameters of Bloom filters to reduce the false

positive rate.

(2) We propose streaming algorithms to detect click fraud in pay-per-click streams of online

advertising networks.

• We address the problem of detecting duplicate clicks in pay-per-click streams over jump-

ing windows and sliding windows, and are the first that propose two innovative algorithms

that make only one pass over click streams and require significantly less memory space

and operations. GBF algorithm is built on group Bloom filters which can process click

streams over jumping windows with small number of sub-windows, while TBF algorithm

is based on a new data structure called timing Bloom filter that detects click fraud over

sliding windows and jumping windows with large number of sub-windows. Both GBF

algorithm and TBF algorithm have zero false negative. Furthermore, both theoretical

analysis and experimental results show that our algorithms can achieve low false positive

rate when detecting duplicate clicks in pay-per-click streams over jumping windows and

sliding windows. A patent [55] is pending based on our research.

1.5 Dissertation Organization

The rest of this dissertation is structured as follows: Chapter 2 provides a review of liter-

ature for the problems targeted in our research. We present our research in data streaming

techniques in Chapter 3, and these techniques can be used to monitor attacks. Attack trace-

back algorithms are proposed in Chapter 4. Chapter 5 discusses our techniques in online fraud

detection. We finally summarize our research and discuss our future work in Chapter 6.

www.manaraa.com

11

CHAPTER 2. LITERATURE REVIEW

This chapter reviews recent literatures which correlates to our research in this dissertation.

2.1 Data Processing over Data Stream Models

Data stream is a hot topic in many research areas, including databases, geometric com-

putation, network security, etc. After this concept is first introduced by Henzinger et al. in

1998 [56], many classical problems are reconsidered under this model. More information can

be found in surveys [18] and [82].

2.1.1 Variance Estimation

Datar et al. [35] proposed an algorithm to solve the Basic-Counting problem over sliding

windows using Exponential Histograms (EH). Given the sliding window size N , and the relative

error ε, the space taken by their algorithm is O(1
ε logN), and the time taken to process each

element is O(1) amortized and O(logN) in worst case. Gibbons and Tirthapura [50] presented

an algorithm based on a data structure called the wave that uses the same space as in [35].

However, their algorithm only takes O(1) time to process each element in worst case. They

also presented three extensions of the sliding window model for the distributed streams.

The EH algorithm [35] can estimate a class of aggregate functions over sliding windows. It

applies to any function f satisfying the following properties for all multisets X, Y :

1. f(X) ≥ 0.

2. f(X) ≤ poly(|X|).

3. f(X
⋃
Y) ≥ f(X) + f(Y).

4. f(X
⋃
Y) ≤ Cf (f(X) + f(Y)), where constant Cf ≥ 1.

www.manaraa.com

12

However, variance does not satisfy the fourth property. For instance, suppose both X

and Y have zero (or very small) variance, but different means. Then the variance of X
⋃
Y

may not be bounded by any constant Cf . Therefore, the EH algorithm cannot be utilized in

variance estimation directly. Consequently, Babcock et al. [17] proposed a new algorithm for

maintaining variance over sliding windows of a data stream. In their algorithm, elements in

the data stream are partitioned into buckets, and the synopses of these buckets are maintained,

which can be used to merge adjacent buckets to save space according to particular combination

constraints. This algorithm requires O(1
ε2

logN) space, and its running time is O(1) amortized

and O(1
ε2

logN) in worst case. However, as mentioned by the authors of [17], there is a gap of

1
ε between the optimal bound Ω(1

ε logN) and their upper bound.

Besides the bit counting and variance problems, several other problems of capturing char-

acteristics of data streams over sliding windows are studied. Zhu and Shasha [121] introduced

basic windows to compute the statistics over a sliding window. Golab et al. [51] utilized the ba-

sic windows mechanism in their deterministic algorithm to identify frequent items over sliding

windows. Babcock et al. [17] proposed an algorithm for maintaining a k-median clustering over

sliding windows of a data stream. Feigenbaum et al. [45] investigated the diameter problem in

the streaming and sliding-window models, and the diameter is the maximum distance between

a pair of elements within a data stream. Lin et al. [67] considered the problem of continuously

maintaining ε-approximate quantiles over sliding windows in a data stream. Arasu and Manku

[16] studied the problem of maintaining ε-approximate counts and quantiles over sliding win-

dows in a data stream. Tirthapura et al. [104] considered the problem of maintaining sketches

of recent elements of a asynchronous data stream in which the observed order of data is not

the same as the time order in which the data was generated.

2.1.2 Frequency Estimation

2.1.2.1 Frequency Statistics Algorithms

Problems related to frequency estimate have been studied by many researchers in different

fields. Flajolet and Martin [46] and Whang et al. [109] proposed probabilistic algorithms to

www.manaraa.com

13

estimate the number of distinct items in a large collection of data in a single pass. Alon et

al [14] researched the frequency moments of a sequence of items. Gibbons and Matias [49]

proposed sampling algorithms to identify top-k queries. Fang et al. [44] presented several

algorithms based on hashing to compute iceberg queries, but each requires at least two passes

over the data stream. Estan and Varghese [41] presented a sampling algorithm named sample

and hold and a hash-based algorithm named multistage filters. Charikar et al. [30] proposed a

data structure called count sketch to find frequent items. Manku and Motwani [72] presented

a randomized algorithm for computing frequency counts exceeding a user-specified threshold.

Cormode and Muthukrishnan [34] proposed randomized algorithms that identify frequent items

when both insertions and deletions are present. Manjhi et al. [70] studied the problem of

computing frequency counts for items occurring frequently in the union of multiple distributed

data streams. Super-spreader problem is researched by Estan et al. [42], Venkataraman et al.

[105] and Zhao et al. [120]. Other recent works on data stream algorithms have been surveyed

in [18, 82].

Here we shortly introduce the algorithm proposed by Misra and Gries [80] which maintains

ε-approximate frequency estimation using exact 1
ε counters with one pass. Suppose there is a

data stream of N items. First, a list of 1
ε counters is initiated to 0. For each item in the stream,

we increase its corresponding counter (if any) by 1. If it has no corresponding counter and

there is a counter cntx which equals zero, then cntx is assigned to this item and set to 1. If the

item has no corresponding counter and there is no zero counter, then every counter is decreased

by 1. Misra-Gries algorithm can maintain ε-approximate frequency estimation, because the

decrease operation of the 1
ε counters can only happen at most N

(1/ε)+1 < εN times. Karp et al.

[61] and Demaine et al. [37] improved the processing time of Misra-Gries algorithm to O(1)

in the worst case. Metwally et al. [76] proposed an algorithm which can report frequent items

and top-k items simultaneously.

www.manaraa.com

14

2.1.2.2 Algorithms over Sliding Windows

The previous frequency statistics algorithms [14, 30, 34, 41, 42, 44, 46, 49, 70, 72, 105, 109,

120] are designed to process all or a piece of the data stream. They cannot be directly used to

process data streams over sliding windows.

Zhu and Shasha [121] introduced basic windows to compute the statistics over sliding

windows. A sliding window is subdivided equally into shorter basic windows. Only a synopsis

data structure is maintained for each basic window and the entire sliding window. When a

new basic window is created, its synopsis is added to that of the entire sliding window, and

the synopsis of the oldest window is expired and deleted. The “smooth” of the sliding window

depends on the size of the basic windows. Smaller sized basic windows have finer scale but need

more space. Larger sized basic windows have coarse scale but need less space. Golab et al.

[51] utilized the basic windows mechanism in their deterministic algorithm to identify frequent

items over sliding windows. Their algorithm identifies and stores the exact top-k frequent

items in each basic window. Then these local top-k frequent items are used to find and update

the global frequent items. To find the exact top-k frequent items in the current basic window,

this algorithm keeps a counter for each unique item. In the worst case, all items in the current

basic window may be unique, therefore this algorithm needs sizeof(basic windows) entries in

the worst case.

Datar et al. [35] proposed an algorithm to solve the Basic-Counting problem over sliding

windows using Exponential Histograms (EH). Given the sliding window size of N , and the

relative error ε, the space taken by their algorithm is O(1
ε logN), and the time taken to

process each item is O(1) amortized and O(logN) in worst case. Gibbons and Tirthapura [50]

presented an algorithm based on a data structure called the wave that uses the same space

as in [35]. However, it only takes O(1) time to process each item in the worst case. Lee and

Ting [64] considered the significant one counting problem over sliding windows, where only

the items which numbers exceed a user-specified threshold are maintained.

Babcock et al. [17] proposed algorithms for maintaining variance and maintaining a k-

median clustering over sliding windows of a data stream. Zhang and Guan [115] also considered

www.manaraa.com

15

how to efficiently maintain variance in sliding windows, and proposed an algorithm which is

optimal in terms of both space requirement and worst case running time. Feigenbaum et al.

[45] and Chan and Sadjad [28] investigated the diameter problem in the streaming and sliding-

window models. The diameter is the maximum distance between a pair of items within a data

stream. Lin et al. [67] considered the problem of continuously maintaining ε-approximate

quantiles over sliding windows in a data stream.

Arasu and Manku [16] studied the problem of maintaining ε-approximate counts and quan-

tiles over a sliding window in a data stream. Their deterministic algorithm for approximate

counts uses the Misra-Gries algorithm [80] as a black-box. They constructed many black-boxes

with different sizes in different levels. These black-boxes can answer the queries combined to-

gether. This algorithm requires O(1
ε log2 1

ε) space and O(log 1
ε) running time. Lee and Ting

[65] studied the same problem and proposed an algorithm which achieves O(1
ε) space. However,

their algorithm needs O(1
ε) processing time for update and query.

Tirthapura et al. [104] considered the problem of maintaining sketches of recent elements

of an asynchronous data stream in which the observed order of data is not the same as the time

order in which the data was generated. They presented algorithms for maintaining sketches of

all elements within the sliding timestamp window that can give provably accurate estimates of

two basic aggregates, the sum and the median, of a stream of numbers. Busch and Tirthapura

[26] proposed a deterministic algorithm for this scenario recently.

2.1.3 Geometric Estimation

Problems related to geometric computation have been studied by many researchers in

different fields. Also, a lot of sliding window related algorithms were proposed recently.

2.1.3.1 Diameter Algorithms

For diameter problem, Preparata and Shamos provideed an O(n log n) algorithm in two-

dimension [88], where n is the number of points. Clarkson and Shor proposed a randomized

algorithm in three-dimension using O(n log n) time [32], and later an optimal deterministic

www.manaraa.com

16

algorithm was designed by Ramos [89].

However, for higher dimensions, there is lack of subquadratic algorithms for diameter com-

putation. Therefore, several approximation algorithms were proposed. Agarwal et al. [13]

presented an approximation algorithm using O((1
ε)

d−1
2) space and O((1

ε)
d−1

2 n) time. Hersh-

berger and Suri [57] provided an adaptive sampling algorithm in two-dimension which uses

O((1
ε)

1
2) space and O(log 1

ε) time per point. Indyk [59] developed a c-approximation algorithm

using O(dn
1

c2−1) space and running time for c >
√

2. Chan [27] proposed a fast ε-approximation

algorithm which runs in O(n+ (1
ε)
d−1.5) time.

2.1.3.2 Convex Hull Algorithms

Richardson [92] proposed an algorithm to approximate two-dimensional static convex hull

scaled by Hausdorff distance using O((1
ε)

1
2) space. Cormode and Muthukrishnan [33] presented

a radial histogram algorithm which can estimate a two-dimensional convex hull using O(1
ε)

space and O(1) running time per point. Agarwal et al. [12] presented a data structure to

maintain ε-approximate convex hull using O((1
ε)

1
2 log n) space and O((1

ε)
1
2) running time per

point. Hershberger and Suri’s adaptive sampling algorithm [57] also maintains two-dimensional

convex hull estimation using O((1
ε)

1
2) space and O(log 1

ε) time per point. However, their

algorithms may not work over sliding windows.

2.1.3.3 Skyline Algorithms

Skyline computation was first studied by Kung et al. [63] in computational geometry. After

that, skyline computation and its variants have been well studied. Tan et al. [102] proposed the

first progressive technique that can output skyline points without scanning the whole dataset

in advance. In the database context, Borzsonyi et al. [19] developed two solutions based on

divide-and-conquer (DC) and blocknested-loop (BNL), respectively. Kossmann et al. [62] and

Papadias et al. [84] presented progressive algorithms based on the nearest neighbor search.

www.manaraa.com

17

2.1.3.4 Sliding Windows Algorithms

Most previous geometric computation algorithms [13, 19, 27, 32, 33, 57, 59, 62, 63, 84, 88,

89, 92, 102] are designed to process all or a piece of the data stream. Therefore, they cannot

be directly used to process a stream of points over sliding windows.

Datar et al. [35] proposed an algorithm to solve the Basic-Counting problem over sliding

windows using Exponential Histograms (EH). After this paper, a lot of algorithms are proposed

to solve different statistics problems over sliding windows, such as variance, quantile, k-median

clustering, frequency, etc. [16, 17, 26, 50, 65, 67, 104, 115, 116, 117]. More inforamtion can be

found in surveys [18] and [82].

For the problem of diameter estimation in two-dimension over sliding windows, Feigenbaum

et al. [45] proposed a clustering algorithm which uses O(1
ε log2N log(Rε)) space. Chan and

Sadjad [28] proposed an optimal algorithm for one-dimension which uses Θ(1
ε logR) space. For

higher dimensions, their algorithm needs O((1
ε)

d+1
2 log R

ε) space.

Lin et al. [68] and Tao and Papadias [103] considered the skyline computation problem in

a data stream over sliding windows. However, they studied this problem in a different context.

In [68], the estimation error is not theoretically guaranteed. The algorithm in [103] computes

the exact skyline which requires huge space in worst case when the window size is large.

2.2 Attack Traceback

2.2.1 Stepping Stone Attack Attribution

Ever since the problem of detecting stepping stones was first proposed by Staniford-Chen

and Heberlein [98], several approaches have been proposed to detect encrypted stepping stone

attacks [54].

The ON/OFF based approach proposed by Zhang and Paxson [119] is the first timing-

based method which can trace stepping stones even if the traffic were to be encrypted. In their

approach, they calculated the correlation of different flows by using each flows’ OFF periods. A

flow is considered to be in an OFF period when there is no data traffic on a flow for more than

www.manaraa.com

18

a time period threshold. Their approach comes from the observation that two flows are in the

same connection chain if their OFF periods coincide. We refer to this method as ON/OFF .

Yoda and Etoh [113] presented a deviation based approach for detecting stepping stone

connections. The deviation is defined as the difference between the average propagation delay

and the minimum propagation delay of two connections. This scheme comes from the obser-

vation that the deviation for two unrelated connections is large enough to be distinguished

from the deviation of connections in the same connection chain. We refer to this method as

Deviation .

Wang et al. [107] proposed a correlation scheme using inter-packet delay (IPD) charac-

teristics to detect stepping stones. They defined their correlation metric over the IPDs in a

sliding window of packets of the connections to be correlated. They showed that the IPD

characteristics may be preserved across many stepping stones. We refer to this method as

IPD .

Wang and Reeves [106] presented an active watermark scheme which is designed to be

robust against certain delay perturbations. The watermark is introduced into a connection

by slightly adjusting the inter-packet delays of selected packets in the flow. If the delay

perturbation is not quite large, the watermark information will remain along the connection

chain. This is the only active stepping stone attribution approach. We refer to this method as

Watermark .

Strayer et al. [100] presented a State-Space algorithm which is derived from their work

on wireless topology discovery. When a new packet is received, each node is given a weight

which decreases as the elapsed time from the last packet from that node increases. Then the

connections on the same connection chain will have higher weights than other connections. We

refer to this method as State-Space . This approach is based on two assumptions. First, the

likelihood of one transmission being a response to a prior transmission generally decreases as

the elapsed time between these transmission increases. Second, the inter-arrival times between

a fixed event and any other event are approximately Poisson distributed.

However, none of these previous approaches can effectively detect stepping stones when

www.manaraa.com

19

delay and chaff perturbations exist simultaneously. When chaff perturbation is added to the

flows and no delay perturbation exists, the timing information used in deviation, IPD and

watermark may be destroyed entirely. Also, many OFF periods will disappear, which degrades

the performance of the ON/OFF method. Even though the State-Space still achieves 0% false

negative rate, if the delay perturbation is an unknown constant, the false negative rate of

State-Space approach will obviously increase. Therefore, if both delay and chaff perturbations

exist simultaneously, none of the previous approaches may provide good performance.

Although no experimental data is available, Donoho et al. [39] indicated that there are

theoretical limits on the ability of attackers to disguise their traffic using evasions for sufficiently

long connections. They assumed that the intruder has a maximum delay tolerance, and used

wavelets and similar multiscale methods to separate the short-term behavior of the flows (delay

or chaff) from the long-term behavior of the flows (the remaining correlation). However, this

method requires the intrusion connections to remain for long periods, and the author never

experimented to show the effectiveness against chaff perturbation. We refer to this method as

Multiscale . These evasions consist of local jittering of packet arrival times and the addition

of superfluous packets.

Blum et al. [23] proposed and analyzed algorithms for stepping stone detection using

ideas from Computational Learning Theory and the analysis of random walks. They achieved

provable (polynomial) upper bounds on the number of packets needed to confidently detect

and identify stepping stone flows with proven guarantees on the false positives, and provided

lower bounds on the amount of chaff that an attacker would have to send to evade detection.

However, their upper bounds on the number of packets required is large, while the lower

bounds on the amount of chaff needed for attacker to evade detection is very small. They did

not discuss how to detect stepping stones without enough packets or with large amounts of

chaff, and did not show experimental results. We refer to their methods as Detect-Attacks

and Detect-Attacks-Chaff .

www.manaraa.com

20

2.2.2 IP Traceback

In this section, we review major existing IP traceback schemes that have been designed to

attribute the origin of IP packets through the Internet. We roughly categorize them into four

primary classes: a) Active Probing [25, 99], b) ICMP Traceback [21, 71, 110], c) Packet Marking

(including deterministic, probabilistic, and algebraic packet marking) [20, 36, 85, 93, 96], and

d) Log-based Traceback [66, 74, 94, 95].

2.2.2.1 Active Probing

Stone [99] proposed a traceback scheme called CenterTrack, which selectively reroutes pack-

ets in question directly from edge routers to some special tracking routers. The tracking routers

determine the ingress edge router by observing from which tunnel the packet arrives. This ap-

proach requires the cooperation of network administrators and the management overhead is

considerably large.

Burch and Cheswick [25] outlined a technique for tracing spoofed packets back to their

actual source without relying on the cooperation of intervening ISPs. The victim actively

changes the traffic in particular links and observes the influence on attack packets, and thus

can determine where the attack comes from. This technique cannot work well on distributed

attacks, and requires the attacks remain active during the time period of traceback.

2.2.2.2 ICMP Traceback (iTrace)

Bellovin [21] proposed a scheme named iTrace to traceback using ICMP messages for

authenticated IP marking. In this scheme, each router samples (with low probability) the

forwarding packets, copies the contents into a special ICMP traceback message, adds its own

IP address as well as the IP of the previous and next hop routers, and forwards the packet either

to the source or destination address. By combining the information obtained from several of

these ICMP messages from different routers, the victim can then reconstruct the path back to

the origin of the attacker.

A drawback of this scheme was that it is much more likely that the victim will get ICMP

www.manaraa.com

21

messages from routers nearby than from routers farther away. This implies that most of

the network resources spent on generating and utilizing iTrace messages will be wasted. An

enhancement of iTrace, called “Intention-Driven iTrace”, was proposed in [71, 110]. By in-

troducing an extra “intention-bit”, it is possible for the victim to increase the probability of

receiving iTrace messages from remote routers.

2.2.2.3 Packet Marking

Savage et al. [93] proposed a Probabilistic Packet Marking (PPM) scheme. Thereafter,

several other PPM-based schemes have been developed [96, 85, 36]. The baseline idea of

PPM is that routers probabilistically write partial path information into the packets during

forwarding. If the attacks are made up of a sufficiently large number of packets, eventually,

the victim may get enough information by combining a modest number of marked packets to

reconstruct the entire attack path. This allows victims to locate the approximate source of

attack traffic without requiring outside assistance.

Deterministic Packet Marking (DPM) scheme proposed by Belenky and Ansari [20] involves

the marking of each individual packet when it enters the network. The packet is marked by

the interface closest to the source of the packet on the edge ingress router. The mark remains

unchanged as long as the packet traverses the network. However, there is no way to get the

whole paths of the attacks.

Dean et al. proposed an Algebraic Packet Marking (APM) which reframes the traceback

problem as a polynomial reconstruction problem and uses techniques from algebraic coding

theory to provide robust methods of transmission and reconstruction. The advantage of this

scheme is that it offers more flexibility in design and more powerful techniques that can be

used to filter out attacker generated noise and separate multiple paths. But it shared similarity

with PPM in that it requires a sufficiently large number of attack packets.

www.manaraa.com

22

2.2.2.4 Log-based Traceback

The basic idea of log-based traceback is that each router stores the information (digests,

signature, or even the packet itself) of network traffic through it. Once an attack is detected,

the victim queries the upstream routers by checking whether they have logged the attack packet

in question or not. If the attack packet’s information is found in a given router’s memory, then

that router is deemed to be part of the attack path. Obviously, the major challenge in log-based

traceback schemes is the storage space requirement at the intermediate routers.

Matsuda et al. [74] proposed a hop-by-hop log-based IP traceback method. Its main fea-

tures are logging packet feature that is composed of a portion of the packet for identification

purpose, and an algorithm using data-link identifier to identify the routing of a packet. How-

ever, for each received packet, about 60 bytes data should be recorded. The resulted large

memory space requirement prevents this method from being applied to high speed networks

with heavy traffic.

Although today’s high-speed IP networks suggest that classical log-based traceback schemes

would be too prohibitive because of the huge memory requirement, log-based traceback be-

comes attractive after Bloom filter-based (i.e., hash-based) traceback schemes were proposed.

Bloom filters were presented by Burton H. Bloom [22] in 1970, and have been widely used

in many areas such as database and networking [24]. A Bloom filter is a space-efficient data

structure for representing a set of n elements to respond membership queries. It is a vector of

m bits which are all initialized to value 0. Then each element is inserted into the Bloom filter

by hashing it using k independent uniform hash functions with range {1, 2, ...,m} and setting

the corresponding k bits (some bits may be overlapped) in the vector to value 1. Given a query

whether an element is present in the Bloom filter, we hash this element using the same k hash

functions and check if all the corresponding bits are set to 1. If any one of them is 0, then

undoubtedly this element is not stored in the filter. Otherwise, we would say that it is present

in the filter, although there is a certain probability that the element is determined to be in the

filter while it is actually not. Such false cases are called false positives. The space-efficiency of

Bloom filters is achieved at the cost of a small acceptable false positive rate f . From [43], we

www.manaraa.com

23

have

f = (1− (1− 1
m

)kn)k ≈ (1− e−kn/m)k. (2.1)

When m and n are given, f is minimized for

k = ln 2×m/n, (2.2)

Thus, we have

f = 2−k ≈ 0.6185
m
n . (2.3)

Bloom filters were first introduced into IP traceback area by Snoeren et al. [95]. They

built a system named Source Path Isolation Engine (SPIE) which can trace the origin of a

single IP packet delivered by the network in the recent past. They demonstrated that the

system is effective, space-efficient and implementable in current or next-generation routing

hardware. Bloom filters are used in each SPIE-equipped router to record the digests of all

packets it received in the recent past. The digest of a packet is exactly several hash values of

its non-mutable IP header fields and the prefix of the payload. Strayer et al. [101] extended

this traceback architecture to IP-v6.

Shanmugasundaram, et al. [94] proposed a payload attribution system (PAS) based on a

Hierarchical Bloom filter (HBF). HBF is such a Bloom filter in which an element is inserted

several times using different parts of the same element. Compared with SPIE which is a packet

digesting scheme, PAS only uses the payload excerpt of a packet. It is useful when the packet

header is unavailable.

Li et al. [66] proposed a Bloom filter-based IP traceback scheme that requires an order

of magnitude smaller processing and storage cost than SPIE, thereby being able to scale to

much higher link speed. The baseline idea of their approach is to sample and log a small

percentage of packets, and 1 bit packet marking is used in their sampling scheme. Therefore,

their traceback scheme combines packet marking and packet logging together. Their simulation

results showed that the traceback scheme can achieve high accuracy, and scale well to a large

www.manaraa.com

24

number of attackers. However, as the authors also pointed out, because of the low sampling

rate, their scheme is no longer capable to trace one attacker with only one packet.

2.3 Online Fraud Detection

2.3.1 Duplicate Detection

Bloom filters were presented by Burton H. Bloom [22] in 1970, and have been widely utilized

in many areas such as networking and database [24]. Bloom filters have been utilized to detect

duplicates in databases. Besides the Bloom filter-based duplicate detecting algorithms, many

other algorithms have been proposed in different research areas such as database systems,

operating systems, computer architecture and network security, etc. The problem of exact

duplicate detection is well studied, and many algorithms have been proposed. Please refer to

[48] for more relevant references.

2.3.2 Online Advertising Fraud Detection

Reiter et al. studied the hit shaving problem [90]. They considered the referral revenue

model that the referrers get payment for every click-through to target sites. A hit shaving is

a practice that the target site undetectably omits to pay a referrer for some number of clicks.

They proposed several approaches to enable referrers to monitor the number of clicks for which

they should be paid.

Anupam et al. proposed a hit inflation attack on pay-per-click online advertising schemes

[15]. Hit inflation is a kind of click fraud which is difficult to detect, where a referrer artifi-

cially inflate the customers’ clicks to make illegal profit. Metwally et al. proposed an algorithm

called Streaming-Rules to detect hit inflations in data streams [77]. They also built an algo-

rithm called Similarity-Seeker to discover coalitions among advertising publishers [78], and a

framework is outlined on a generic architecture [79].

Metwally et al. considered the problem of detecting duplicates in click streams [75]. They

proposed a scheme over landmark windows which is a direct deployment of Bloom filters [22].

They also discussed how to detect duplicates over jump windows and sliding windows. To run

www.manaraa.com

25

over sliding windows, they use a modification of Bloom filters named Counting Bloom Filter,

which is similar to [43]. However, their solution must keep all active click identifications in

memory to slide them out later after they expire.

Deng and Rafiei considered the problem of approximately eliminating duplicates in streams

with a limited space [38]. They proposed a data structure named Stable Bloom Filter, which

randomly evicts the stale information to release room for more recent elements. However, their

randomly evicting mechanism introduces false negatives besides the inherent false positives of

Bloom filters.

Gandhi et al. described a type of click fraud threat to Internet advertising called badver-

tisement [47]. This attack utilizes malicious JavaScript to publish sponsored advertisements on

clients’ web browsers invisibly. The authors proposed active and passive approaches to detect

and prevent such kind of click fraud.

www.manaraa.com

26

CHAPTER 3. RESEARCH IN ATTACK ATTRIBUTION PART I:

MONITORING TECHNIQUES

3.1 Variance Estimation over Sliding Windows

3.1.1 Introduction

The problem of capturing characteristics of large data streams has received considerable

attention [18, 82]. Many characteristics of large data streams, such as sum, mean, variance,

diameter, frequency, quantile, top-k list (hot list), distribution, etc., have been widely studied.

If we have sufficient large space and do not have time constraints, we can obtain any charac-

teristics that we want precisely. However, the issue in processing large data streams is that in

many cases we probably do not have enough space to keep each element in the data streams.

That is, we have to gather the interested characteristics with one pass and we have no chance

to go through the data streams again.

An even greater challenge is to process data streams over sliding windows. An algorithm

can work over sliding windows if it can not only gather the data streams characteristics, but also

update the characteristics when new data is inserted and old data is expired. Unfortunately,

many previous data stream algorithms cannot work over sliding windows. In this research, we

are interested in estimating element variance in data streams over sliding windows, while using

as little space and operation as possible and making only one pass over the data streams.

3.1.1.1 Motivation

Variance estimation can be useful in many different research fields, e.g., network monitoring,

intrusion detection, financial monitoring, weather forecast, disaster forecast, etc. Variance is an

www.manaraa.com

27

important statistical measure to evaluate the variability of random variables. Also, variance

is often related to anomaly and status change, therefore variance is a powerful measure for

anomaly detection and forecast. For instance, in weather forecast, variance is an important

variable to accurately forecast precipitation, temperature, wind direction and speed, etc. In

disaster forecast and reduction field, before disasters, such as earthquake, tornado and flood,

happen, there usually exists some anomaly that can be observed and evaluated using variance.

To calculate the variance of a fixed series of elements is trivial. However, in many cases,

different data have different weights (importance) according to the time. That is, there is time

decay in the data streams. For instance, for a network intrusion detection system, the current

network status is more important than that of one day ago, because we can use the current

network status to detect ongoing anomaly and intrusions and accordingly take some measures

to reduce the potential damage. Sliding window model is a general time decay model that only

considers the most recent N elements evenly, and discards the influence of all older elements,

where N is the window size. Sliding window model can provide recent data information by

removing the stale data. Unfortunately, it is nontrivial to calculate the variance of data streams

in sliding window model. For example, when a computer network is under attacks, it may show

large variance in terms of connection numbers, traffic volume and delays, etc. However, it is

difficult to maintain accurate variance of these variables over sliding windows when the network

has heavy traffic.

Recently several algorithms are proposed for capturing different kinds of characteristics of

large data streams over sliding windows [16, 17, 35, 45, 50, 51, 67, 104, 121]. For the problem

of variance estimation over sliding windows, the best algorithm was proposed by Babcock et

al. [17]. However, as mentioned by the authors of [17], there is still a gap between the optimal

space bound and their upper bound. Also, the running time of their algorithm is not constant

in worst case. Consequently, it is desired to find an efficient variance estimation algorithm over

sliding windows which needs less space and runs in constant time.

www.manaraa.com

28

3.1.1.2 Problem Definition

Definition 1. Variance: Let {x1, x2, · · · , xN} be a series of N integers (which may be neg-

ative). The variance of these N numbers is defined by

V =
N∑
i=1

(xi − µ)2,

where µ = 1
N

∑N
i=1 xi denotes the mean of these N integers.

To calculate the exact variance of fixed N numbers is trivial. We only need to keep two

variables: one is the sum of all numbers, and the other is the sum of all numbers’ squares.

However, calculating exact variance over sliding windows is more difficult and challenging. For

a stream of numbers, if we want to calculate the exact variance of the most recent N numbers,

the memory requirement is Ω(N). In some cases, it is impossible to keep so much memory

space for variance estimation purpose. Consequently, we have to find efficient and accurate

approximation algorithms to estimate the variance over sliding windows.

Definition 2. ε-Approximation: Let V̂ denote the estimation of the real value V . V̂ is an

ε-approximation of V if

|V − V̂ | ≤ εV,

where 0 < ε < 1 denotes the relative error.

Problem Statement In this research, we study the problem stated as follows: Given

an arbitrary window size N and an error bound ε, how to maintain ε-approximate variance of

a stream of integers over sliding windows with size N in one pass?

3.1.1.3 Our Contributions

In this research, we address the problem of maintaining ε-approximate variance of data

streams over sliding windows [115]. To our knowledge, the best existing algorithm for this

problem by Babcock et al. [17] requires O(1
ε2

logN) space, and its running time is O(1)

amortized and O(1
ε2

logN) in worst case. Datar et al. [35] presented a space lower bound

www.manaraa.com

29

of Ω(1
ε logN) for maintaining the sum and hence the variance of the last N elements when

assuming that the maximum absolute value of the integer elements is at most polynomial in N .

Therefore, there is a gap of 1
ε between the optimal bound and the best existing upper bound.

In this study, we propose the first ε-approximation algorithm to maintain variance of data

streams over sliding windows that is optimal in both space and worst case time. Our algorithm

requires O(1
ε logN) space. Furthermore, its running time is O(1) in worst case.

3.1.2 Algorithm

We first describe our algorithm, and then analyze its error bound, space requirement and

running time.

3.1.2.1 Algorithm Description

Let N denote the window size and ε be the relative error parameter. An existing element is

called active if it is one of the most recent N elements within the current window, or expired if

it leaves the current window. For each element xi, an index posi is used to record its position

in the data stream, which is an indicator of “active” or “expired” by comparing with pos – the

position index of the most recent element.

Similar to the algorithm in [17], elements in the data stream are partitioned into buckets.

For each bucket Bi, we keep a timestamp ti, which equals the position index of the oldest

element in this bucket. Besides the timestamp, the following statistics information (ni, µi, Vi)

is also maintained:

ni : number of elements in the bucket;

µi : mean of elements in the bucket;

Vi : variance of elements in the bucket.

Figure 3.1 shows the description of our algorithm. To estimate the variance of the data

stream in current sliding window, we maintain a triplet (nall, µall, Vall) which objects are the

www.manaraa.com

30

count, mean and variance of the combination of all active buckets in current window respec-

tively. Note that nall, µall and Vall are all initialized to zero at the beginning of the data

stream.

Our algorithm has three steps when a new element arrives. When a new element xt comes,

the current index pos is updated. The new element constitutes a new bucket B1 with t1 = pos,

n1 = 1, µ1 = xt, V1 = 0, and an old bucket Bi becomes Bi+1. We update (nall, µall, Vall) by

including the new bucket B1 using Lemma 1.

Also, we check the oldest bucket Bm which has timestamp tm. If it is expired, we first

update (nall, µall, Vall) by excluding the expired bucket Bm using Lemma 1. Then we delete

bucket Bm, which means our algorithm only maintains the buckets which elements are all

active in the current window. We can use a wraparound counter with maximum N − 1 to

represent the timestamps (i.e., position indices), since the oldest bucket will be deleted as soon

as it expires. Therefore, the timing information of each bucket can be represented by dlogNe

bits.

We then check whether there are qualified pairs of adjacent buckets that can be merged to

save space. Let BA = Bi+1
⋃
Bi+2 and BB =

⋃i
j=1Bj . We merge two adjacent buckets Bi+1

and Bi+2 if and only if they satisfy the following merging rules:

Rule 1. VA,B − VB ≤ ε
5VB.

Rule 2. nA ≤ ε
10nB.

Rule 3. nA + nB ≤ N
2 .

We will explain why we set such merging rules when analyzing the error bound of our

algorithm. When two adjacent buckets merge into a merged bucket, the merged bucket’s

timestamp is set to be the timestamp of the older one, and the merged bucket’s statistics

information can be calculated using Lemma 1. The merging step checks newer buckets first

before checking older buckets.

www.manaraa.com

31

Step 1: Insert New Element xt.
Let pos = pos+ 1 mod N .
Create a new bucket for xt. The new bucket becomes B1 with t1 = pos, n1 = 1, µ1 = xt,
V1 = 0.
(Note that an old bucket Bi becomes Bi+1.)
Update (nall, µall, Vall) by including new bucket B1.

Step 2: Delete Expired Bucket.
Let Bm be the oldest bucket.
if there are at least 2 buckets and tm = pos

Update (nall, µall, Vall) by excluding bucket Bm.
Delete bucket Bm.

endif

Step 3: Merge Buckets.
Let i = 1, and BB = B1.
while Bi+2 exists

Let BA = Bi+1
⋃
Bi+2.

if nA + nB > N
2

return
endif
if nA ≤ ε

10nB and VA,B − VB ≤ ε
5VB

Delete Bi+2, and let Bi+1 = BA.
(Note that bucket Bj+1 becomes Bj for j ≥ i+ 2.)

else
Let i = i+ 1, and BB = BB

⋃
Bi.

endif
endwhile

Figure 3.1 Algorithm Description

www.manaraa.com

32

N 0

N 02/N

2/N

N 0
*iB2/N

iiB ,1+

1W2W

W

1+iB iB 1B2B

CB

AB

CBB ,

CBAB ,,

*3|| +PB

2|| +PB

BB

2+iB 1+iB

BAB ,

BB

iB 1B

AB

eAB
aAB

Figure 3.2 An Illustration of the Buckets

3.1.2.2 Error Bound

Before determining the space requirement and running time of our algorithm, we first prove

that it can maintain ε-approximate variance of data streams over sliding windows. Lemma 1

gives the equations to calculate the statistics information of the combination of two buckets.

Lemma 1. When two buckets Bi and Bj are merged into a single bucket Bi,j, the count, mean

and variance of Bi,j can be computed from those of Bi and Bj as follows:

ni,j = ni + nj ,

µi,j =
niµi + njµj
ni + nj

,

Vi,j = Vi + Vj +
ninj
ni + nj

(µi − µj)2. (3.1)

Proof. This lemma and its proof can be found in [17].

Using Lemma 1, we can immediately get the following lemma which calculates the statistics

information of the combination of three buckets.

Lemma 2. When three buckets Bi, Bj and Bk are merged into a single bucket Bi,j,k, the count,

www.manaraa.com

33

mean and variance of Bi,j,k can be computed as follows:

ni,j,k = ni + nj + nk,

µi,j,k =
niµi + njµj + nkµk

ni + nj + nk
,

Vi,j,k = Vi + Vj,k +
ni(nj + nk)
ni + nj + nk

(µi − µj,k)2.

Now let us analyze how estimation error is generated. For a bucket Bi which has ni = 1,

there is no estimation error when it expires, because either the single element or none element of

Bi is active when the current window slides over Bi. Consequently, only the buckets generated

by merging which have more than one element can introduce estimation error when expiring.

For instance, as shown in Figure 3.2, consider any merged bucket BA which has more than

one element, when it expires, it is split by the sliding window into two virtual buckets: the

expired bucket BAe which contains all expired elements of BA, and the active bucket BAa

which contains all active elements of BA. In Figure 3.2, we use doted boxes to denote the

virtual buckets BB and BC . The virtual bucket BB contains all newer elements when bucket

BA generates by merging, and the virtual bucket BC contains all newer elements after BB

when bucket BA expires. Note that BC may become larger when more elements in BA expires

with the slide of the current window. Because we do not have the exact variance of bucket

BAa , we have to return the estimated variance V̂ = VB,C , which is the variance of all active

buckets kept in memory space (i.e., Vall), to estimate the real variance.1

Let δ denote the relative error of the variance estimation of our algorithm. If the real

variance V = VAa,B,C = 0, then according to Lemma 1 or 2, V̂ = VB,C ≤ VAa,B,C = 0, and

δ = 0 < ε. When V = VAa,B,C 6= 0, δ is defined by

δ =
V − V̂
V

=
VAa,B,C − VB,C

VAa,B,C
.

We will prove that 0 ≤ δ < ε when V = VAa,B,C 6= 0 by utilizing the two virtual buckets BB
1Although we may not know exact VB and VC since one merged bucket may expand the boundary between

virtual buckets BB and BC , we can still calculate VB,C which is the variance of the combination of all active
buckets.

www.manaraa.com

34

and BC . We first provide the relationship between nB and nC .

Lemma 3. For any merged bucket BA, let virtual bucket BB contains all newer elements when

bucket BA generates by merging, and let virtual bucket BC contains all newer elements after

BB when bucket BA expires. We have

nB < nC .

Proof. By construction, nAa +nB +nC = N . Thus, nC = N − (nAa +nB). On the other hand,

nAa < nA, since nAa represents the number of active elements of the bucket A, and the expired

portion of A is assumed to be non-empty. Thus, nC > N − (nA +nB). Now, by applying Rule

3 of merging rules (i.e., nA + nB ≤ N
2), it follows that N − (nA + nB) ≥ N

2 . This implies that

nC >
N
2 . Since nAa +nB+nC = N , it results that nB < N

2 since nAa > 0. Thus, nB < nC .

To prove 0 ≤ δ < ε, we first relax the relative error δ to an auxiliary parameter θ, and then

prove that θ < ε, where

θ =
VA + nA(nB+nC)

nA+nB+nC
(µA − µB,C)2

VB + nBnC
nB+nC

(µB − µC)2
.

Lemma 4. 0 ≤ δ ≤ θ.

Proof. Equation (3.1) in Lemma 1 shows that the variance of a bucket is larger than or equal

to that of its sub-bucket. We know that BA,B,C = BAe
⋃
BAa,B,C = BA

⋃
BB,C , and thus

BB,C ⊂ BAa,B,C ⊂ BA,B,C . Consequently, we get

VA,B,C ≥ VAa,B,C ≥ VB,C .

www.manaraa.com

35

Therefore,

0 ≤ δ =
VAa,B,C − VB,C

VAa,B,C
≤
VA,B,C − VB,C

VB,C

=
VA + nA(nB+nC)

nA+nB+nC
(µA − µB,C)2

VB + VC + nBnC
nB+nC

(µB − µC)2

≤
VA + nA(nB+nC)

nA+nB+nC
(µA − µB,C)2

VB + nBnC
nB+nC

(µB − µC)2
= θ.

Consequently, if we can prove that θ ≤ ε, then our algorithm is an ε-approximation al-

gorithm. We consider all possibilities of µC , which is the mean of virtual bucket BC , in the

following three cases separately. We will show that in each of these three cases, θ is less than

ε. Without loss of generality, we assume that µA ≤ µB. When µA > µB, we can make simi-

lar analysis and get the same conclusion, since actually we only utilize the order information

between µA and µB.

Case 1. µB ≤ µC ≤ 2µB − µA

Lemma 5. In Case 1, θ < ε.

Proof. According to Rule 2, nA ≤ ε
10nB < nB

10 . Furthermore, Rule 1 shows that VA,B − VB ≤
ε
5VB. We only consider that VA,B 6= 0, thereby VB 6= 0. Thus, we get

ε ≥ 5
VA,B − VB

VB
= 5

VA + nAnB
nA+nB

(µA − µB)2

VB

≥ 5
VA + nAnB

0.1nB+nB
(µA − µB)2

VB

= 5
VA + nA

1.1 (µA − µB)2

VB
.

Therefore,

ε > 4
VA + nA(µA − µB)2

VB
. (3.2)

Because µB ≤ µC in Case 1, and the mean of a merged bucket should be bounded between

the means of its two sub-buckets, thus µB ≤ µB,C ≤ µC . Therefore, in Case 1 that µB ≤ µC ≤

www.manaraa.com

36

2µB − µA, we get

µB ≤ µB,C ≤ 2µB − µA.

We have assumed that µA ≤ µB, therefore

0 ≤ µB − µA ≤ µB,C − µA ≤ 2(µB − µA).

We get |µA − µB,C | ≤ 2|µA − µB|. Consequently,

θ =
VA + nA(nB+nC)

nA+nB+nC
(µA − µB,C)2

VB + nBnC
nB+nC

(µB − µC)2

≤
VA + nA(nB+nC)

nA+nB+nC
(µA − µB,C)2

VB

≤
VA + nA

nB+nC
nA+nB+nC

4(µA − µB)2

VB

≤ VA + 4nA(µA − µB)2

VB

≤ 4
VA + nA(µA − µB)2

VB
.

Compared with inequality (3.2), we get θ < ε.

N 0

),,(AAA Vn µ),,(BBB Vn µ

),,(,,, BABABA Vn µ

),,(,,, CBCBCB Vn µ

N 0

),,(AAA Vn µ),,(BBB Vn µ

),,(,,,,,, CBACBACBA Vn µ

),,(ccc Vn µ

2/N

2/N

N 0
*iB2/N

iiB ,1+

1W2W

W

eAB
aAB

1+iB iB 1B2B

AB BB

CB

BAB ,

CBB ,

CBAB ,,

*3|| +PB

2|| +PB

BB

Figure 3.3 An Illustration of the Buckets and Windows

Case 2. µC > 2µB − µA

Lemma 6. In Case 2, θ < ε.

Proof. In this case that µC > 2µB − µA, we get

µB − µA < µC − µB.

www.manaraa.com

37

We have assumed that µA ≤ µB, therefore µB < µC . Also, the mean of a merged bucket

should be bounded between the means of its two sub-buckets, therefore µB < µB,C < µC .

Consequently,

|µA − µB,C | < µC − µA = µC − µB + µB − µA

< 2|µB − µC |. (3.3)

Therefore,

θ =
VA + nA(nB+nC)

nA+nB+nC
(µA − µB,C)2

VB + nBnC
nB+nC

(µB − µC)2

=
VA

VB + nBnC
nB+nC

(µB − µC)2
+

nA(nB+nC)
nA+nB+nC

(µA − µB,C)2

VB + nBnC
nB+nC

(µB − µC)2

<
VA
VB

+
nA(nB+nC)
nA+nB+nC

(µA − µB,C)2

nBnC
nB+nC

(µB − µC)2

=
VA
VB

+
nA
nB
· (nB + nC)2

(nA + nB + nC)nC
· (
|µA − µB,C |
|µB − µC |

)2.

Equation (3.1) in Lemma 1 shows that the variance of a bucket is larger than or equal to the

sum of variance of both sub-buckets. Therefore VA ≤ VA,B − VB. According to Rule 1, we get

VA
VB
≤
VA,B − VB

VB
≤ ε

5
.

According to Rule 2, we get
nA
nB
≤ ε

10
.

From inequality (3.3), we get

(
|µA − µB,C |
|µB − µC |

)2 < 4.

Let g(nC) = (nB+nC)2

(nA+nB+nC)nC
. Consequently,

θ <
ε

5
+

ε

10
· g(nC) · 4 =

ε

5
(1 + 2g(nC)).

www.manaraa.com

38

The derivative of g(nC) is

g′(nC) =
(nB + nC)[(nA − nB)nC − (nA + nB)nB]

(nA + nB + nC)2n2
C

< −(nA + nB)(nB + nC)nB
(nA + nB + nC)2n2

C

< 0.

Therefore, g(nC) decreases with the increase of nC . According to Lemma 3 that nB < nC ,

g(nC) < g(nB) =
4nB

nA + 2nB
<

4nB
2nB

= 2.

Therefore,

θ <
ε

5
(1 + 2g(nC)) < ε.

Case 3. µC < µB

Lemma 7. In Case 3, θ < ε.

Proof. We claim that for any instance BC in Case 3, we can find an equal or even worse

instance BC′ in terms of θ which mean belongs to either Case 1 or Case 2, such that θ < θ′

where

θ′ =
VA + nA(nB+nC′)

nA+nB+nC′
(µA − µB,C′)2

VB + nBnC′
nB+nC′

(µB − µC′)2
.

If µC < µB, we construct BC′ from BC by adding 2(µB − µC) to each element in BC . For

bucket BC′ ,

nC′ = nC ,

µC′ = 2µB − µC > µB.

Consequently, the mean µC′ of bucket BC′ belongs to either Case 1 or Case 2, and thus θ′ < ε

according to Lemma 5 and 6. Since µC and µC′ are symmetric about µB, µB,C and µB,C′

www.manaraa.com

39

should also be symmetric about µB. Therefore µB,C + µB,C′ = 2µB, and

µB,C′ − µB = µB − µB,C > 0.

We have assumed that µA ≤ µB, therefore

|µA − µB,C | = |(µB − µB,C)− (µB − µA)|

= |(µB,C′ − µB)− (µB − µA)|

≤ |(µB,C′ − µB) + (µB − µA)|

= |µA − µB,C′ |,

and

θ =
VA + nA(nB+nC)

nA+nB+nC
(µA − µB,C)2

VB + nBnC
nB+nC

(µB − µC)2

=
VA + nA(nB+nC)

nA+nB+nC
(µA − µB,C)2

VB + nBnC
nB+nC

(µB − µC′)2

≤
VA + nA(nB+nC′)

nA+nB+nC′
(µA − µB,C′)2

VB + nBnC′
nB+nC′

(µB − µC′)2

= θ′.

Consequently, we get θ ≤ θ′ < ε in Case 3.

We have shown that, when the real variance V = 0, our algorithm returns the estimation

V̂ = 0. When the real variance V 6= 0, according to Lemma 4, 5, 6 and 7, we get 0 ≤ δ ≤ θ < ε

where δ denotes the relative error of the variance estimation of our algorithm. Consequently,

we get the following theorem about the error bound of our algorithm.

Theorem 1. Our algorithm can maintain ε-approximate variance of data streams over sliding

windows.

Furthermore, we make the observation that our algorithm only makes one-sided error. That

www.manaraa.com

40

is,

(1− ε)V ≤ V̂ ≤ V.

To help understand our algorithm, we shortly explain why we set such three merging rules

and why these three merging rules can bound the estimation error to O(ε). As shown in Lemma

4,

0 ≤ δ ≤ θ =
VA + nA(nB+nC)

nA+nB+nC
(µA − µB,C)2

VB + nBnC
nB+nC

(µB − µC)2
.

First of all, Rule 1 implies that O(VAVB) = O(ε). Furthermore, when µC is close to µB (i.e., Case

1), Rule 1 and 2 can guarantee that

O(
nA(nB+nC)
nA+nB+nC

(µA − µB,C)2

VB
) ≈ O(ε).

However, when µC is far way from µA and µB (i.e., Case 2), in worst case

O(
nA(nB+nC)
nA+nB+nC

(µA − µB,C)2

VB + nBnC
nB+nC

(µB − µC)2
) ≈ O(

nA
nB
· (nB + nC)2

(nA + nB + nC)nC
)

≈ O(ε · N
nC

).

Therefore we have to add a constraint on nC (i.e., Rule 3), such that O(nC) = O(N) to bound

relative error to O(ε).

3.1.2.3 Space Requirement

Now consider any two adjacent buckets Bi and Bi+1 when i ≥ 2 after the merging procedure

completes. Let bucket Bi+1,i = Bi+1
⋃
Bi and bucket Bi∗ =

⋃i−1
j=1Bj , and Figure 3.3 shows

an illustration. When ni+1,i + ni∗ = ni+2∗ ≤ N
2 , according to the merging rules, our algorithm

has the following invariant:

www.manaraa.com

41

Invariant 1. For i ≥ 2, if Bi+1 exists, Bi+1,i has either

Property 1: ni+1,i = ni+2∗ − ni∗ >
ε

10
ni∗ , or

Property 2: Vi+1,i,i∗ − Vi∗ = Vi+2∗ − Vi∗ >
ε

5
Vi∗ .

Let W denote the current N -sized window, W1 denote the current N
2 -sized window, and

W2 denote the past N
2 -sized window. We define three sets, P , P1 and P2. P is all adjacent

bucket pairs in W1 except the first pair (i.e. B1
⋃
B2). P1 is a subset of P which contains

all adjacent bucket pairs with Property 1, and P2 is a subset of P which contains all adjacent

bucket pairs with Property 2.

P = {Bi+1,i : ni+2∗ ≤
N

2
, i ≥ 2},

P1 = {Bi+1,i : ni+2∗ > (1 +
ε

10
)ni∗ , Bi+1,i ∈ P},

P2 = {Bi+1,i : Vi+2∗ > (1 +
ε

5
)Vi∗ , Bi+1,i ∈ P}.

Then from Invariant 1, we get

P = P1

⋃
P2,

|P | ≤ |P1|+ |P2|.

Let m denote the number of buckets within the current N -sized window W . Let m1 denote

the number of buckets within the current N
2 -sized window W1. Let m2 denote the number of

buckets within the past N
2 -sized window W2. Then

m1 = |P |+ 2.

Consider any window W2, all buckets in it are from a particular old W1 after potential merging.

According to Rule 3, any bucket which passes the boundary between W1 and W2 will not change

www.manaraa.com

42

any more in W2 before it expires. Consequently, at any time,

m2 ≤ max(m1).

In addition, there is at most one bucket which expands the boundary between W1 and W2.

Consequently,

m ≤ m1 +m2 + 1 ≤ 2 max(m1) + 1 = 2 max(|P |) + 5. (3.4)

Therefore, if we can find the upper bound of |P |, we get the bound of m (i.e., the number of

buckets in our algorithm) accordingly.

Lemma 8. In the case that every Bi+1,i in P has Property 1 (i.e., P = P1), we have

|P1| < 2d10
ε
e logN − 1.

Proof. In this case, since any adjacent bucket pair Bi+1,i has Property 1 when i ≥ 2, then for

any index i+ 2j ≤ |P1|+ 3 with i ≥ 2,

ni+2∗ > (1 +
1
10
ε)ni∗ ,

ni+4∗ > (1 +
1
10
ε)ni+2∗ > (1 +

2
10
ε)ni∗ ,

ni+6∗ > (1 +
1
10
ε)ni+4∗ > (1 +

3
10
ε)ni∗ ,

...

ni+2j∗ > (1 +
j

10
ε)ni∗ .

Thus when j = d10
ε e, ni+2j∗ > 2ni∗ . Consequently, ni∗ will be doubled when i increases every

2d10
ε e. We know that n2∗ = n1 = 1, therefore

2
b |P1|+1

2d 10
ε e
c
· n2∗ ≤ n|P1|+3∗ ≤

N

2
,

2
|P1|+1

2d 10
ε e < N,

|P1| < 2d10
ε
e logN − 1.

www.manaraa.com

43

Let R be the upper bound on the absolute value of the data elements.

Lemma 9. In the case that every Bi+1,i in P has Property 2 (i.e., P = P2), we have

|P2| < 2d5
ε
e log(

3NR2

2
) + 1.

Proof. The proof is similar to that of Lemma 8. In this case, the maximum element number

bound N
2 in window W1 becomes the maximum variance bound N

2 R
2. Vi∗ will be doubled

when i increases every 2d5
ε e.

We claim that V4∗ ≥ 2
3 . First, V4∗ > 0, otherwise V4∗ = V2∗ = 0 which violates Property

2. Because V4∗ > 0, and all elements in the data stream are integers, then V4∗ achieves its

minimum value 2
3 if and only if the three elements in B4∗ are {c1, c1, c1 ± 1}, where c1 is an

integer. Consequently,

2
b |P2|−1

2d 5
ε e
c
· V4∗ ≤ V|P2|+3∗ ≤

NR2

2
,

2
|P2|−1

2d 5
ε e <

3NR2

2
,

|P2| < 2d5
ε
e log(

3NR2

2
) + 1.

Lemma 10. In any case, we have

|P | < 2d10
ε
e logN + 2d5

ε
e log(

3NR2

2
).

Proof. We check the size of subsets P1 and P2 separately. First, consider how many pairs of

adjacent buckets that have Property 1 (belong to P1) can exist to contain at most N
2 elements.

Any pair of adjacent buckets which does not belong to P1 also contributes to contain some

number of elements. Further, ni∗ is still doubled after every 2d10
ε e pairs of adjacent buckets in

P1. Consequently, Lemma 8 is still true for |P1|. Similarly, any pair of adjacent buckets which

www.manaraa.com

44

does not belong to P2 also contributes to the increase of variance, and Lemma 9 is still true

for |P2|. Therefore,

|P | ≤ |P1|+ |P2| < 2d10
ε
e logN + 2d5

ε
e log(

3NR2

2
).

Consequently, we get the space bound of our algorithm as shown in the following theorem.

Theorem 2. Our algorithm can maintain ε-approximate variance of data streams over sliding

windows using O(1
ε logN) space.

Proof. According to inequality (3.4) and Lemma 10, we get

m ≤ 2 max(|P |) + 5

< 4d10
ε
edlogNe+ 4d5

ε
edlog(

3NR2

2
)e+ 5.

Therefore, our algorithm is O(1
ε log(NR2)) in space. Assume that R is at most polynomial in

N , the space requirement is in fact O(1
ε logN).

3.1.2.4 Running Time

Obviously, the running time of our algorithm is O(1
ε logN) in worst case. Although Step

1 and 2 are both O(1), Step 3 needs O(1
ε logN) in worst case. Now we propose a mechanism

which makes our algorithm an O(1) running time algorithm in worst case. The baseline idea

is that we only check constant number of pairs of adjacent buckets each time in the third

(merging) step.

Let c be an integer which is large than 1. When each element arrives, we still insert it as

a new bucket (Step 1) and delete expired bucket if any (Step 2). However, instead of checking

all pairs of adjacent buckets within W1 in Step 3, we only run the kernel while loop c times.

After that, the merging procedure is hanged up and will be resumed with the same status when

a new element arrives. Note that before the merging procedure completes, each new element

www.manaraa.com

45

is stored in an individual bucket, and window W1 does not slide (although window W slides

and the expired buckets are still deleted). Since many new buckets may be queued before the

merging procedure completes, we need extra space to keep them. However, such extra space

can still be efficiently bounded.

Lemma 11. Let Y denote the maximum number of buckets that window W1 can have after

merging procedure completes which is in O(1
ε logN) as shown in Theorem 2. Let Z denote the

maximum number of new arriving elements (buckets) during the merging procedure. Then

Z ≤ d Y

c− 1
e.

Proof. Let yi denote the number of buckets that window W1 can have after the ith merging

procedure completes. Let zi denote the number of new arriving elements during the ith merging

procedure. Then for the i+ 1th merging procedure, in the beginning, window W1 can contain

at most yi + zi buckets and at most yi + zi − 2 pairs of adjacent buckets which need to check

after the first bucket B1. Because we check c pairs of adjacent buckets when receiving a new

element, we have

zi+1 ≤ d
yi + zi − 2

c
e.

We claim that for any index i ≥ 1, zi ≤ d Y
c−1e. We use induction to prove this claim. First,

z1 = 1. Suppose for an index i > 1, the claim is true. Then for index i+ 1,

zi+1 ≤ dyi + zi − 2
c

e ≤ d
Y + d Y

c−1e − 2
c

e

≤ d
Y + Y

c−1

c
e ≤ d Y

c− 1
e.

Therefore, we get Z ≤ d Y
c−1e.

Lemma 11 shows that we can process a new element using constant time while the extra

space and thus the total space are still in O(1
ε logN). Further, it is clear that our algorithm can

update (nall, µall, Vall) in O(1), therefore our algorithm can answer a query of the variance in

www.manaraa.com

46

the current sliding window with constant time. Consequently, we get the final theorem which

concludes the optimal properties of our algorithm:

Theorem 3. Our algorithm can maintain ε-approximate variance of data streams over sliding

windows using O(1
ε logN) space. Furthermore, the running time of processing a new element

and answering a query is O(1) in worst case. Our algorithm is optimal in both space and worst

case time.

3.1.3 Conclusions

In this research, we address the problem of maintaining ε-approximate variance in data

streams over sliding windows. Our proposed algorithm only needs O(1
ε logN) space and O(1)

running time in worst case. Therefore, it is optimal in both space and worst case time. In the

future, we will continue to extend our algorithm to other data stream statistics problems over

sliding windows.

3.2 Frequency Estimation over Sliding Windows

3.2.1 Introduction

The problem of computing characteristics of large data streams has received considerable

attention [18, 82]. Many characteristics of large data streams, such as frequency, quantile, sum,

mean, variance, diameter, top-k list (hot list), distribution, etc., have been widely studied. If

we have sufficient large space and do not have time constraints, we can precisely obtain any

characteristics that we want. However, the issue in processing large data streams is that in

many cases we probably only have one chance to process each item in the data streams. We

cannot store all data because of constraints in memory space or privacy issue. Therefore, in

these cases we have to gather the interested characteristics with only one pass.

An even greater challenge is to process data streams over sliding windows. An algorithm

which works over sliding windows not only can gather the data streams’ characteristics, but

also update the characteristics by inserting new data and deleting expired data. Unfortunately,

many previous data stream algorithms cannot work over sliding windows.

www.manaraa.com

47

3.2.1.1 Motivation

Frequency is a fundamental characteristic in many data mining applications. For instance,

it can be used in sensor data mining, analysis of web query logs, network measurement and

monitoring, bandwidth statistics for billing purposes, transaction analysis in stocks, and iceberg

queries [44] in large-scale data bases, etc.

In recent years, such problems are considered under sliding window models. The advantage

of an algorithm which works over sliding windows is that it can get rid of the stale data and

only consider the fresh data, which is meaningful in many cases. For instance, in an intrusion

detection system (IDS), the current status of the network is usually more important than that

of one day ago. The characteristics gathered over sliding windows can provide a more smooth

view of the data stream. However, many previous algorithms cannot work over sliding windows.

Recently, several data mining algorithms over sliding windows are proposed [16, 17, 35, 45,

50, 51, 67, 104, 115, 121]. For the problem of ε-approximate frequency estimation over sliding

windows, Arasu and Manku [16] presented an algorithm which requires O(1
ε log2 1

ε) space and

O(log 1
ε) running time. Recently, an algorithm proposed by Lee and Ting [65] achieves O(1

ε)

space, but needs O(1
ε) processing time for update and query. There is no algorithm which

can achieve both linear space in terms of 1
ε and constant running time simultaneously. In this

research, we are trying to design an efficient frequency estimation algorithm which needs O(1
ε)

space and O(1) running time.

3.2.1.2 Problem Definition

ε-Approximate Frequency Estimation Suppose we have a data stream with N items,

and each item is in the set I. A frequency estimation algorithm is an ε-approximate algorithm

if it guarantees that for any item i ∈ I, the error between true frequency fi and estimated

frequency f̂i is bounded by

0 ≤ fi − f̂i ≤ εN. (3.5)

www.manaraa.com

48

Sliding Window There are two common types of sliding windows, count-based windows

which maintain the last (most recent) N items in the stream, and time-based windows which

maintain all items that arrived in the last T time units. Therefore, the time span of a count-

based window may vary, while the number of items in a time-based window may change from

time to time. For example, let < i, t > denote that an item i arrives at timestamp t. We have

a stream of items as

< i1, 1 >,< i2, 2 >,< i3, 5 >,< i1, 6 >,< i4, 7 >, . . .

If the sliding window is count-based with N = 3, then the item sets in the sliding windows

follow {i1}, {i1, i2}, {i1, i2, i3}, {i2, i3, i1}, {i3, i1, i4}, If the sliding window is time-based

with T = 2.1, then the item sets in the sliding windows follow {i1}, {i1, i2}, {i2}, {φ}, {i3},

{i3, i1}, {i3, i1, i4}, . . .

Problem Statement In this research, we consider the problem stated as follows: Given

an arbitrary window size N and an error bound ε, how to maintain ε-approximate frequency

estimation of a data stream over count-based sliding windows with size N in one pass?

We leave the problem of frequency estimation over time-based sliding windows to our future

work.

3.2.1.3 Our Contributions

To our knowledge, the best existing algorithms for the problem of estimating ε-approximate

frequency in data streams over sliding windows either require O(1
ε log2 1

ε) space and O(log 1
ε)

running time [16], or require O(1
ε) both in space and running time [65]. Our contribution

in this research is that we propose two novel deterministic algorithms, Snapshot-Basic and

Snapshot-Advanced, which can maintain ε-approximate frequency estimation over sliding

windows only using O(1
ε) space [117]. Furthermore, Snapshot-Advanced is the first efficient

deterministic algorithm which can achieve O(1
ε) space requirement and only needs O(1) running

time to process each item in the data stream and to answer a query. In addition, as an

www.manaraa.com

49

application of our algorithms, we extend them to solve the problem of estimating flow size.

3.2.2 SNAPSHOT Algorithms

Let N denote the window size and ε be the error parameter. To simplify the description,

we assume that 1
ε is an integer, and εN can be divided by 3. We first propose a basic algorithm

named Snapshot-Basic, which is straightforward but needs quite a number of operations to

process an arrival item. Then we introduce a more sophisticated algorithm named Snapshot-

Advanced which can work in O(1) running time.

3.2.2.1 Basic Algorithm

The baseline idea of Snapshot-Basic is to snapshoot items’ position information so that

we can use the snapshots to update estimates and bound the estimation error over sliding

windows which is similar to the idea in [65]. For instance, we take snapshots on the positions

of the 1st, 101st, 201st, · · · identical items. When a snapshot expires, we can decrease the cor-

responding item’s frequency estimates by 100, therefore it is possible to bound the estimation

error to the level of 100.

Figure 3.4 describes the Snapshot-Basic algorithm. A linked list L is kept with at most 3
ε

item entries, which is called item list. In each entry of the item list, we keep an item identifier,

a counter f̂ as its frequency estimate, and a pointer to another linked list which stores the

snapshots of this item. It means that each item entry has its own snapshot list. When a new

item i arrives, and the item list L is not full, we create an entry for it in L. We set its frequency

estimate f̂i to 1. We also snapshoot the current position, which means that we add the current

position index n into this item’s snapshot list. Instead of keeping all its positions, we only

snapshoot the 1st, (εN3 + 1)th, (2εN
3 + 1)th, (εN + 1)th, · · · positions of item i. When an old

item arrives, we simply increase its frequency estimate by 1, and snapshoot if necessary. In

the case that the arrival item i is a new item, and L has kept 3
ε distinct items, we decrease the

frequency estimate of each item by 1. We delete all snapshots and items which are no need

to keep. To update the current sliding window, when an item arrives, we first find the oldest

www.manaraa.com

50

snapshot among all snapshots of all items. If this oldest snapshot is out of the current window,

this snapshot is deleted, and the corresponding item’s frequency estimate is decreased by εN
3 .

We delete this item from the item list L if its frequency estimate is less than or equal to 0.

Step 1: Delete expired snapshot and item.
Find the oldest snapshot.
If it is expired and belongs to item j, delete this snapshot, and decrease f̂j by εN

3 .
If f̂j ≤ 0, delete item j from list L.

Step 2: Process the arrival item i.

Case 1: i is an old item (i.e., i ∈ L).
Increase f̂i by 1.
If f̂i = 1 mod εN

3 , snapshoot the current position.

Case 2: i is a new item, and L is not full.
Create an entry for item i in list L.
Set f̂i to 1 and snapshoot the current position.

Case 3: i is a new item, and L is full of 3
ε items.

For each item j in list L:
Decrease f̂j by 1.
If f̂j = 0 mod εN

3 , delete the most recent snapshot
from j’s snapshot list.

If f̂j = 0, delete item j from L.

Figure 3.4 Snapshot-Basic Algorithm Description

Figure 3.6 shows an example of how Snapshot-Basic works. In this example, N = 18,

ε = 1
2 , and the input data stream is shown in Figure 3.5. The item list will keep at most 6

(= 3
ε) entries, and positions are snapshot for each 3 (= εN

3) identical items. The up arrow

“↑” in Figure 3.5 shows that there is a snapshot taken on that position. Figure 3.6(a) shows

the item list L when n = 18, and there are 6 items in list L and totally 8 snapshots in all

snapshot lists, so there is no room for new items in list L. When the 19th item i3 arrives, the

snapshot si1,1 expires and is deleted, and f̂i1 is decreased by 3. Also, a new snapshot entry

si3,2 is inserted into the head of i3’s snapshot list as shown in Figure 3.6(b). When the 20th

item i7 arrives, no snapshot expires. Because i7 is not present in the item list L and there is

no room to create a new item entry for i7, all counters in the item list are decreased by 1. The

www.manaraa.com

51

position 1 2 3 4 5 6 7 8 9 10 11 12
item i1 i1 i2 i3 i3 i4 i5 i1 i4 i6 i2 i5

snapshots in Snapshot-Basic ↑ ↑ ↑ ↑ ↑ ↑
snapshots in Snapshot-Advanced ↑c ↑c ↑c ↑p ↑c ↑p

position 13 14 15 16 17 18 19 20 21 22 23 · · ·
item i2 i3 i1 i6 i5 i2 i3 i7 i8 i9 i3 · · ·

snapshots in Snapshot-Basic ↑ ↑ ↑ ⇓ ↑ ↑ ↑ · · ·
snapshots in Snapshot-Advanced ↑p ↑p ↑p ↑p ⇓ ↑p ↑ · · ·

Figure 3.5 An Example Data Stream

2ˆ
6

=if6i

3ˆ
5

=if5i

2ˆ
4

=if4i

3ˆ
3

=if3i

4ˆ
2

=if2i

4ˆ
1

=if1i

101,6
=is

71,5
=is

61,4
=is

182,2
=is

152,1
=is 11,1

=is

41,3
=is

][Lhead

2ˆ
6

=if6i

3ˆ
5

=if5i

2ˆ
4

=if4i

4ˆ
3

=if3i

4ˆ
2

=if2i

1ˆ
1

=if1i

101,6
=is

61,4
=is

192,3
=is

151,1
=is

41,3
=is

][Lhead

71,5
=is

31,2
=is 182,2

=is 31,2
=is

2ˆ
5

=if5i

1ˆ
4

=if4i

3ˆ
3

=if3i

3ˆ
2

=if2i

61,4
=is

41,3
=is

][Lhead

71,5
=is

31,2
=is

1ˆ
6

=if6i 101,6
=is

18)a(=n 19)b(=n 20)c(=n

Figure 3.6 Example Item List when Window Slides in Snapshot-Basic.

19)a(=n 20)b(=n 21)c(=n

0
1
=icntc1i

10
6
=ips

15
1
=ips

20
7
=ips

18
2
=ips1

2
=icntc2i

0
7
=icntc7i

0
6
=icntc6i

/

/
1

5
=icntc5i

6
4
=ips0

4
=icntc4i

0
1
=icntc1i

10
6
=ips

15
1
=ips

19
3
=ips

18
2
=ips1

2
=icntc2i

1
3
=icntc3i

0
6
=icntc6i

/

/
1

5
=icntc5i

6
4
=ips0

4
=icntc4i

0
1
=icntc1i

10
6
=ips

15
1
=ips

19
3
=ips

18
2
=ips0

2
=icntc2i

1
3
=icntc3i

0
6
=icntc6i

/

/
1

5
=icntc5i

6
4
=ips0

4
=icntc4i

10
6
=is

18
2
=is

19
3
=is

6
4
=is

1P][Phead 2P0P

NIL 10
6
=is

6
4
=is

1P][Phead 2P0P

NIL 20
7
=is 10

6
=is19

3
=is

6
4
=is

][Phead 2P1P

15
1
=is

19
3
=is

15
1
=is

18
2
=is

15
1
=is

19)a(=n 20)b(=n 21)c(=n

19
3
=ips1

3
=icntc3i

18
2
=is

Figure 3.7 Example Hash Table when Window Slides in Snapshot-Ad-

vanced.

www.manaraa.com

5219)a(=n 20)b(=n 21)c(=n

0
1
=

iccnt
1i

10
6
=ips

15
1
=ips

20
7
=ips

18
2
=ips1

2
=

iccnt
2i

0
7
=

iccnt
7i

0
6
=

iccnt
6i

/

/
1

5
=

iccnt
5i

6
4
=ips0

4
=

ic
cnt

4i

0
1
=

iccnt
1i

10
6
=ips

15
1
=ips

19
3
=ips

18
2
=ips1

2
=

iccnt
2i

1
3
=

iccnt
3i

0
6
=

iccnt
6i

/

/
1

5
=

iccnt
5i

6
4
=ips0

4
=

ic
cnt

4i

0
1
=

iccnt
1i

10
6
=ips

15
1
=ips

19
3
=ips

18
2
=ips0

2
=

ic
cnt

2i

1
3
=

iccnt
3i

0
6
=

iccnt
6i

/

/
1

5
=

iccnt
5i

6
4
=ips0

4
=

ic
cnt

4i

10
6
=is

18
2
=is

19
3
=is

6
4
=is

1P][Phead 2P0P

NIL 10
6
=is

6
4
=is

1P][Phead 2P0P

NIL 20
7
=is 10

6
=is19

3
=is

6
4
=is

][Phead 2P1P

15
1
=is

19
3
=is

15
1
=is

18
2
=is

15
1
=is

19)a(=n 20)b(=n 21)c(=n

19
3
=ips1

3
=

iccnt
3i

18
2
=is

Figure 3.8 Example Partial Snapshot List when Window Slides in Snap-

shot-Advanced.

down arrow “⇓” shows that there is a decrease operation in this position. i1 is deleted from

list L as its frequency estimate is equal to 0. Also, snapshots si2,2 and si3,2 are deleted from

i2’s and i3’s snapshot lists as shown in Figure 3.6(c).

It is possible that an inserted item is deleted from L and appears again in the data stream

after the deletion. In this case, it is treated as a new item because there is no entry (memory)

for it in L. For example, when we snapshoot the 5th i3 on position 23, the old entry and

snapshots for i3 have been expired or deleted, so i3 is reinserted into the item list L again as a

new item. Also, when we snapshoot the (xεN3 + 1)th position of an item, it is possible that this

position is actually the (xεN3 + 1 + y)th position of this item in the data stream if the decrease

operations in Case 3 of Step 2 have happened y times, where x and y are non-negative integers.

Now we prove the correctness of the Snapshot-Basic algorithm, and give the space re-

quirement.

Theorem 4. For any item i, no matter whether it appears in the data stream or not, Snapshot-

Basic can maintain ε-approximate frequency estimation over sliding windows with size at most

N . Furthermore, Snapshot-Basic uses O(1
ε) space.

Proof. Approximation:

The error of frequency estimation comes from two sources. One is the operation to clear the

expired snapshot in Step 1, and the other is the decrease operation in Case 3 of Step 2. In Step

1, once a snapshot just expires, we should only decrease the corresponding item’s frequency

www.manaraa.com

53

estimate by 1. However, Snapshot-Basic decreases it by εN
3 . Then this operation will

introduce a negative error at most εN
3 − 1. Fortunately, this kind of error will not accumulate

for the same item during data stream when multiple snapshots of the same item expire and

are deleted. The reason is that, when the next snapshot of the same item expires, the sliding

window has moved on and the error introduced by the previous expired snapshot is out of the

current window and decreases to zero. Therefore, the error introduced by the operation in

Step 1 can be bounded to εN
3 − 1 at any time for any items.

When Case 3 of Step 2 happens, all existing items must decrease their frequency estimates

by 1, and the new item cannot be inserted. Therefore, this operation will introduce a negative

error equal to 1 for certain items. Now we calculate how many times this decrease operation

can be performed in any current window not wider than N . Suppose the current window

size is N ′.2 Let the last(most recent) item’s position index in the current window be n. So

the items in the current window is {en−N ′+1, en−N ′+2, . . . , en}. Let sumj denote the sum of

all frequency estimates in the item list L when the current item’s position index is j. So

sumn−N ′ is the sum of all frequency estimates in the item list just before entering the current

window, and sumn is the sum of all frequency estimates in the item list at the end of the

current window. There are N ′ new arrival items in the current window, so the maximum value

that can be decreased during the current window is sumn−N ′ − sumn + N ′. The operations

in Step 1 guarantee that no expired item can be counted, so sumn−N ′ ≤ N . In the worst

case, sumn = 0, sumn−N ′ = N , and Step 1 is not performed (which means that all frequency

estimate decreases are from Case 3 of Step 2). Each time the decrease operation decreases the

sum exactly by 3
ε plus 13. Therefore, the number of the decrease operations in Case 3 of Step

2 is at most
sumn−N ′ − sumn +N ′

3
ε + 1

<
N +N ′

3
ε

≤ 2εN
3
. (3.6)

The negative error introduced by the decrease operations in Case 3 of Step 2 is at most 2εN
3 .

2N ′ can be any positive integer less than or equal to N .
3All estimates in the 3

ε
entries are decreased by 1, and the new item is not counted.

www.manaraa.com

54

Consequently, for any item i, we get

0 ≤ fi − f̂i ≤
εN

3
− 1 +

2εN
3

< εN. (3.7)

Therefore, Snapshot-Basic can maintain ε-approximate frequency estimation over sliding

windows with size at most N . Also, this algorithm only makes one-sided error.

Space Requirement:

Snapshot-Basic keeps an item list L which has at most 3
ε entries. Also, some snapshots

are stored. For each item in the list, there may be two kinds of snapshots. One kind is the

current snapshot. This kind of snapshots for all items is no more than the number of item

entries which is 3
ε . Another kind is the old snapshots which represent position information of

at least εN
3 identical items. Step 1 guarantees that no expired snapshot exists in the space, so

this kind of snapshots is no more than N
εN/3 = 3

ε . Therefore, there are at most 3
ε item entries

and 6
ε snapshots, and the total space requirement of Snapshot-Basic is O(1

ε).

The proof also shows that for any window with size less than N , if it is included in the

current N -sized window, Snapshot-Basic can return the frequency estimates with an error

less than εN .

We can also record the number of decrease operations (in Case 3 of Step 2), and use this

information to refine the frequency estimates. Suppose an item i’s oldest valid snapshot is

si,1, we can count the number of decrease operations after si,1 and add this number to f̂i

when querying its frequency. However, this additional information cannot improve the error

bound, therefore we do not utilize such information about performing decrease operations in

our algorithms.

Now we explain why we bound the number of item entries to 3
ε , and snapshoot positions

for each εN
3 identical items.4 Suppose we bound the item entries to x

ε , and snapshoot positions

for each εN
y identical items. Snapshot-Basic totally needs x

ε item entries and x+y
ε snapshot

entries in the worst case, therefore the total number of entries is 2x+y
ε .

4If 3
ε

is not an integer, we bound the number of item entries to d 3
ε
e; If εN

3
is not an integer, we snapshoot

positions for each b εN
3
c identical items.

www.manaraa.com

55

Theorem 5. To guarantee the ε-approximation error in Snapshot-Basic, the total number

of entries 2x+y
ε reaches the minimum value when x = y = 3.

Proof. We want to minimize the objective function

f(x, y) = 2x+ y. (3.8)

We have positive constraints for x and y that x, y > 0. Similar to the proof of Theorem 4, the

estimation error must be bounded by

εN

y
+

2N
x
ε

≤ εN, (3.9)

and we get
1
y

+
2
x
≤ 1. (3.10)

Therefore

y ≥ x

x− 2
, (3.11)

and

x > 2. (3.12)

When y = x
x−2 , f(x, y) can reach its minimum value. So

f(x, y) ≥ 2x+
x

x− 2
=
x(2x− 3)
x− 2

= g(x). (3.13)

dg(x)
dx

=
2x2 − 8x+ 6

(x− 2)2
=

2(x− 1)(x− 3)
(x− 2)2

. (3.14)

When x = y = 3, dg(x)
dx = 0, and f(x, y) reaches its feasible minimum value 9.

Therefore, when we bound the number of item entries to 3
ε , and snapshoot positions for

each εN
3 identical items, we use the minimum number of entries in the worst case. For instance,

if we set x = 4, then y = 2, and x + 2y = 10, which is larger than the minimum value. In

practice, the item entry and snapshot entry may spend different sizes of space. For instance,

www.manaraa.com

56

if we want to estimate the number of packets from each source IP in an IPv6 network over a

sliding window with 20-bit size, then each item identifier will use 128 bits, while a snapshot

entry will use about 20 bits. In this case, we can rewrite the objective function by multiplying

the space size of different entries, and calculate the optimal parameters of x and y. We also

need consider the data structure overhead for each entry in the objective function.

Although Snapshot-Basic can maintain ε-approximate frequency estimation over sliding

windows using O(1
ε) entries, it needs O(1

ε) operations for each arrival item in the worst case.

Both Step 1 and Case 3 of Step 2 need O(1
ε) operations. Even though we can use a binary tree

to manage the item list, the decrease operation in Case 3 of Step 2 still needs O(1
ε) operations

in the worst case. Therefore, Snapshot-Basic is not adequate to process large data streams

with high rates.

3.2.2.2 Advanced Algorithm

We propose an advanced algorithm Snapshot-Advanced which can maintain ε-approximate

frequency estimation over sliding windows using O(1
ε) entries and O(1) operations. It uses

more sophisticated data structure to maintain item entries and snapshot entries such that all

operations can run in O(1) time.

First, we use a hash table T to manage all item entries. Then the operation of finding the

existence of an item can be performed in O(1) time.

To reduce the running time of inserting a new snapshot, deleting an expired snapshot, or

finding a given snapshot, all snapshot entries of all items are inserted into a doubly-circularly-

linked list S. When the current position needs to be snapshot, it is inserted to the head of

S. When the oldest snapshot entry expires, it is exactly the tail of S. Therefore, S is an

automatically sorted list, with the oldest snapshot in the tail, and the newest snapshot in

the head. All operation on the list S, i.e., inserting the current snapshot, deleting the oldest

snapshot, and deleting a given snapshot, can be performed in O(1) time.

The most difficult operation in terms of time complexity is how to decrease each frequency

estimate by 1 and delete the items and snapshots that have no need to keep (which corre-

www.manaraa.com

57

sponding counts go down to 0). To solve this issue, we first designate snapshots into two

groups, complete snapshots and partial snapshots. A snapshot is complete if the item’s

counter increases at least εN
3 after (including) that snapshot. A snapshot is partial if the

item’s counter dose not increase as many as εN
3 after that snapshot. In the previous data

stream example shown in Figure 3.5, the up arrows ↑c and ↑p indicate a complete snapshot

and a partial snapshot respectively (when looking from position 22). Notice that all complete

snapshots were partial snapshots at the beginning. But once a partial snapshot updates to a

complete snapshot, it will remain complete until it is expired and deleted no matter whether

the decrease operation happens or not later.

For each item i in hash table T , we use three auxiliary counters, cntci, cntoi and cntb,

combined together to represent its frequency estimate. Here cntci is the number of complete

snapshots that item i has, and cntoi is an offset counter which records the offset to cntb, where

cntb is a shared base counter for all items which is first set to 0 before processing the data

stream. Once a decrease operation happens, instead of decreasing all items’ offset counters by

1, cntb is increased by 1 mod εN
3 . If an arrival item i is an old item without a partial snapshot

or a new item, its offset counter is set by

cntoi = (cntb+ 1) mod
εN

3
. (3.15)

If an arrival item i is an old item with a partial snapshot, its offset counter is increased by

1 mod εN
3 . The frequency estimate of an item i is calculated by

f̂i = cntci ·
εN

3
+ ((cntoi − cntb) mod

εN

3
). (3.16)

All partial snapshots which have the same offset counter value cntox are grouped into a

doubly-linked list Pcntox , which is called a local partial snapshot list. To save space, we keep

only one cntox for each Pcntox instead of keeping cntox for each item in this list. All such

local lists are managed by an automatically sorted doubly-circularly-linked list P . That is,

all the heads in all local partial snapshot lists are linked in P , which is called a global partial

www.manaraa.com

58

snapshot list. If a partial snapshot is in a local list Pcntox , we say that it is also in global list

P . As mentioned above, both complete snapshots and partial snapshots are inserted into the

snapshot list S. However, only partial snapshots are inserted into P .

At the beginning, both item table T and snapshot list S are empty. cntb is set to 0, and the

global partial snapshot list P has an entry Pcntb which is empty. The head of P always points

to Pcntb no matter whether Pcntb is empty or not, and Pcntb is called garbage list. Instead of

bounding the number of item entries in Snapshot-Basic, we bound the number of partial

snapshot entries in P to 3
ε in Snapshot-Advanced. Let |Pcntox | denote the number of partial

snapshot entries in Pcntox which have offset counter value cntox, then
∑ εN

3
−1

cntox=0 |Pcntox | ≤ 3
ε .

Step 1: Delete expired snapshot and item.
Let s denote the snapshot on the tail of S, and suppose s belongs to item j.
If s is not expired, goto Step 2.
Delete s from S.
If s is a complete snapshot, decrease cntcj by 1.
If s is a partial snapshot, delete it from Pcntoj .
If cntcj = 0 and j has no partial snapshot, delete item j from T .

Step 2: Process the arrival item i.

Case 1: i is an old item with partial snapshot.
Delete its partial snapshot entry from Pcntoi .
Let k = (cntoi + 1) mod εN

3 .
If k 6= cntb, insert this entry into Pk;
Otherwise, increase cntci by 1 and set this entry as complete snapshot.

Case 2: i is an old item without partial snapshot or a new item, and P is not full.
If i is a new item, create an item entry for item i with cntci = 0, and insert it into T .
Create a partial snapshot entry recording the current position, and insert it into the head
of S and P(cntb+1) mod εN

3
.

Case 3: i is an old item without partial snapshot or a new item, and P is full.
If P(cntb+1) mod εN

3
exists, move head of P to it and delete Pcntb.

Increase cntb by 1 mod εN
3 .

Step 3: Garbage Collection.
If Pcntb is not empty, delete its head entry from Pcntb and S.
If the corresponding item has no complete snapshot, delete this item entry from T .

Figure 3.9 Snapshot-Advanced Algorithm Description

www.manaraa.com

59

Figure 3.9 gives the algorithm description of Snapshot-Advanced. Figure 3.7 and Figure

3.8 show an example of how Snapshot-Advanced works. In this example, N = 18 and ε = 1
2 ,

and the input data stream is shown in Figure 3.5. The partial snapshot list will keep at most

6 entries, and positions are snapshot for each 3 identical items. The up arrows “↑c” and ‘↑p”

in Figure 3.5 indicate that the corresponding snapshot is a complete snapshot or a partial

snapshot respectively (when looking from position 22). Figure 3.7(a) shows the hash table T

when n = 19, and there are 6 item entries in the hash table T , 5 partial snapshot entries in the

global partial snapshot list P , and totally 8 snapshot entries in the snapshot list S. We do not

draw the sorted snapshot list S to save paper space. These 5 partial snapshots are grouped

according to their offset counters as shown in 3.8(a). Now cntb = 0, the garbage list P0 is

empty and its next list is P1. When the 20th item i7 arrives, no snapshot expires. The new

item i7 is inserted into the hash table T as shown in Figure 3.7(b). As its hash value is equal

to that of i3, i7 and i3 are in the same item list. A new partial snapshot entry psi7 is inserted

into the head of the corresponding local partial snapshot list P1 as shown in Figure 3.8(b).

It is also inserted into the head of snapshot list S. Now there is no room left in the partial

snapshot list. When the 21st item i8 arrives, the complete snapshot si2,1 on position 3 which

belongs to i2 expires and is deleted from the tail of snapshot list S, and cntci2 is decreased by

1. Because i8 is not present in the item list and there is no room for creating a new partial

snapshot entry, cntb is increased by 1 mod εN
3 . The down arrow “⇓” in Figure 3.5 shows that

there is such a “decrease operation” in this position. The garbage list updates to P1, and P0

is deleted. The partial snapshot psi7 in the head of P1 is deleted. psi7 is also deleted from

snapshot list S. The other 3 partial snapshots in the garbage list will be released one by one

when the following 3 items arrive. i7 is deleted from the item list as cntci7 = 0 and it has no

partial snapshot. The items and partial snapshots surrounded by dotted lines in Figure 3.7(c)

and Figure 3.8(c) show that these entries should be released.

Notice that, when “decrease operation” happens, not all present items in T will decrease

their estimates by 1. Only the items with a partial snapshot perform this operation. For

example, in Figure 3.5, there is a snapshot on position 7 for item i5. It converts from a partial

www.manaraa.com

60

snapshot to a complete snapshot after the 17th item arrives, and f̂i5 = 3. When the 21st item

arrives, i5 has no partial snapshot and does not decrease its estimate.

Now we prove the correctness of the Snapshot-Advanced algorithm, and give the space

requirement and running time.

Theorem 6. For any item i, no matter whether it appears in the data stream or not, Snapshot-

Advanced can maintain ε-approximate frequency estimation over sliding windows with size at

most N . Furthermore, Snapshot-Advanced uses O(1
ε) space and O(1) running time when

processing each arrival item and answering any query.

Proof. Approximation:

The proof of approximation correctness is similar to that in Theorem 4 for Snapshot-

Basic. The error of frequency estimate still comes from two sources: One is the operation in

Step 1, and the other is the operation in Case 3 of Step 2. Similarly, the error introduced by

Step 1 is a negative error at most εN
3 − 1. When Case 3 of Step 2 happens, all items with

partial snapshots must decrease their frequencies by 1, and the arrival item cannot be counted.

Therefore, this operation will introduce a negative error equal to 1 for certain items. With the

same deduction, such an operation can only perform at most 2εN
3 times in any window with

size N or less. Finally, for any item i, we get

0 ≤ fi − f̂i < εN (3.17)

Consistence:

To keep the constant time complexity in the garbage collection step, each time we only

release one garbage entry. Therefore we must consider the consistence issue. First, cntb will not

change before all garbage entries are released. Each time Step 3 will release a partial snapshot

entry which can be used to insert the next new item, so Case 3 of Step 2 will never happen

before the garbage list is empty. It is possible that an item’s partial snapshot is in the garbage

list and waiting for release while an identical item arrives. In this scenario, this partial snapshot

is removed from the garbage list to the list with offset counter value (cntb + 1) mod εN
3 . A

www.manaraa.com

61

partial snapshot can be removed out from the garbage list, however, no partial snapshot can

enter the garbage list. The reason is that once a partial snapshot’s offset counter updates from

(cntb − 1) mod εN
3 to cntb, according to Case 1 of Step 2, this partial snapshot converts to a

complete snapshot and deleted from the partial snapshot list.

Space Requirement:

Snapshot-Advanced keeps snapshot entries in linked lists and item entries in a hash

table. The number of partial snapshots is bounded to 3
ε (including the partial snapshots in

the garbage list). The number of complete snapshots is no more than N
εN/3 = 3

ε as Step 1

guarantees that no expired snapshot exists in the space. Also, each item entry has at least

one snapshot, so the number of item entries is no more than the number of all snapshots.

Therefore, the total space requirement of Snapshot-Advanced is O(1
ε).

Complexity:

As discussed above, all operations listed in Figure 3.9 can be performed in O(1) time and

there is no loop in the algorithm, therefore the complexity of Snapshot-Advanced to process

each arrival item is just O(1).

To answer an arbitrary query concerned about item i, if item i cannot be found in the

hash table, then we return 0 as its frequency estimate. If the queried item i is present in the

hash table, we can easily retrieve cntci, cntoi and cntb in O(1) time, and use equation (3.16)

to calculate its frequency estimate. Therefore, the complexity of Snapshot-Advanced to

answer a query is O(1).

3.2.3 Experimental Evaluation

In our experimental studies, we use real world Internet traffics provided by CAIDA [6] to

evaluate the performance of Snapshot-Basic and Snapshot-Advanced. The data set is

from one of CAIDA’s OC48 traces5, which records all packets’ header information collected at

one large Internet Service Provider (ISP) in San Jose, California on April 24, 2003. The OC48

network trace we used in our experiments have totally 84,579,312 packets from 225,488 unique
5OC48 is a network line with transmission speeds of up to 2488.32 Mbit/s.

www.manaraa.com

62

source IP addresses. The packet number distribution is shown in Figure 3.10, which indicates

that most source IPs have small number of packets and some elephant IPs hide in them. For

instance, more than half IPs have less than 10 packets.

All experiments were run on a computer with 3.2GHz Pentium IV CPU and 2GB RAM,

which operation system is Windows XP Professional. All algorithms are implemented using C

language.

3

68

1374

7087

26830

61998

128128

0 20000 40000 60000 80000 100000 120000 140000

>=1000000

100000--999999

10000--99999

1000--9999

100--999

10--99

1--9
N

um
be

r o
f P

ac
ke

ts

Number of IPs

Figure 3.10 Packet Number Distribution.

3.2.3.1 Estimation Error

To evaluate the correctness of our algorithms, we set the window size N to 1,000,000, and

the relative estimation error ε to 0.001. Therefore, we expect that the estimation error of our

algorithms is within 1000 (= εN) during last 1,000,000 packets at any position for any source

IP. Figure 3.11 shows the experimental results. Since it is hard and unnecessary to draw all

225,488 source IPs’ frequencies, to make readable figures, we only show the 24 frequent source

IPs which have at least 10,000 packets in a certain window of 1,000,000 packets when the sliding

window slides over the 84,579,312 packets. 6 Figure 3.11(a) shows the exact frequencies of

the 24 frequent source IPs in sliding windows. The X-axis denotes the last packet’s index

number in current sliding window, and here 1M equals 1,000,000; The Y -axis denotes the

exact frequencies (number of packets from a distinct frequent source IP). As shown in the

figure, the most frequent source IP has about 41,000 packets in a sliding window.

The estimation errors of these 24 frequent IP flows using Snapshot-Basic and Snapshot-

6Other source IP flows have similar pattern as these 24 frequent IP flows.

www.manaraa.com

63

Advanced are shown in Figure 3.11(b) and 3.11(c) respectively. The X-axes of them denote

the same as the X-axis in Figure 3.11(a); The Y -axes denote the estimation error (fi − f̂i),

where fi is the exact frequency of source IP i and f̂i is its frequency estimation. As expected,

the estimation error (fi − f̂i) is one-sided error, and the largest estimation error is about

500 which is far away from the theoretical bound (εN = 1000). The estimation errors of

Snapshot-Basic and Snapshot-Advanced have similar patterns. Most of the estimation

errors vibrate between range [170,500]. The reason is that the “decrease operation” happens

about 170 times during the range of 1,000,000 packets in this data set, and the deletion of an

expired position always introduces a sudden error of εN
3 ≈ 330 to that item.

0

5000

10000

15000

20000

25000

30000

35000

40000

0M 10M 20M 30M 40M 50M 60M 70M 80M

Number of Current Packets

Ex
ac

t F
re

qu
en

cy

(a) Exact frequencies of 24 frequent
items in sliding windows

0

100

200

300

400

500

0M 10M 20M 30M 40M 50M 60M 70M 80M

Number of Current Packets

Es
ta

m
at

io
n

Er
ro

r

(b) Estimation error of Snapshot-
Basic

0

100

200

300

400

500

0M 10M 20M 30M 40M 50M 60M 70M 80M

Number of Current Packets

Es
ta

m
at

io
n

Er
ro

r

(c) Estimation error of Snapshot-
Advanced

Figure 3.11 Experimental Results (N = 1, 000, 000. ε = 0.001)

3.2.3.2 Space Requirement

Although there are many linked lists in Snapshot-Basic and Snapshot-Advanced, and

an additional hash table in Snapshot-Advanced, there are only 2 kinds of entries maintained

in memory: item entries and snapshot entries. We set N = 1, 000, 000 and calculated the

www.manaraa.com

64

maximum number of each kind of entries in memory with different ε. The results shown in

Table 3.1 support that both Snapshot-Basic and Snapshot-Advanced require O(1
ε) space.

Table 3.1 Space Requirement

1
ε

Snapshot-Basic Snapshot-Advanced

max # max # max # max #

of items of snapshots of items of snapshots

102 300 323 303 322

102.25 534 591 538 591

102.5 949 1098 955 1102

102.75 1688 2089 1699 2093

103 3000 4071 3017 4092

3.2.3.3 Running Time

We implemented the Lee-Ting algorithm [65] and compared with Snapshot-Basic and

Snapshot-Advanced. In Snapshot-Advanced, we set the size of the hash table T to 3
ε (i.e.,

the average length of T is slightly larger than 1). We use (int32(IP address) mod sizeof(T)) as

the hash function. For instance, suppose ε = 0.001 and the size of T is 3000, an item with IP

address 1.2.3.4 is hashed to the entry with index (1 · 224 + 2 · 216 + 3 · 28 + 4)%3000 = 1060.

In our experiments, we set N = 1, 000, 000, and profiled the running time of these algorithms

with different ε.

Figure 3.12 shows the results. We made the observation that both Lee-Ting and Snapshot-

Basic have nearly linear running time with respect to 1
ε , and Snapshot-Basic is faster than

Lee-Ting. However, the running time of them is unacceptable if we need more precise es-

timation with smaller ε. In this case, Snapshot-Advanced has significant advantage over

Lee-Ting and Snapshot-Basic since its running time is nearly constant as shown in Figure

3.12.

3.2.4 Extensions

As an application, we extend our algorithms to another problem – how to estimate flow

size. Here a flow is defined as a substream which items have the same item identifier. In this

problem, each arrival item is associated with a positive integer (e.g., the number of bytes in

www.manaraa.com

65

311.6

607.3

1114.8

2251.7

6836.8

3465.9

1193.4

649.1

354.8

195.8

19.721.523.126.124.1

10

100

1000

10000

2 2.25 2.5 2.75 3
log(1/epsilon)

R
un

ni
ng

 T
im

e
(s

ec
on

d)

Lee-Ting

Snapshot-Basic

Snapshot-Advanced

Figure 3.12 Running Time

an Internet packet). we need to estimate the accumulation of these positive numbers of each

distinct item. For example, in an Internet packet stream collected from an ISP with millions

of different source IP addresses, all packets from an identical source IP are combined into a

flow, and each packet may contain more than one byte of payload. We are interested in how

to estimate the payload bytes sent out from distinct source IP addresses.

There may be two definitions of the sliding windows in this case, and hence two problems

on how to maintain ε-approximate frequency. The first sliding window is defined to cover the

most recent N payload bytes, and the second is defined to cover the most recent N packets.

Because of page limitation, we only give sketches of the solutions.

Problem 1. Given a packet stream, a window size N and an error bound ε, how to estimate

the size of any flow with error no more than εN bytes in the sliding window of the most recent

N payload bytes?

Sketch Solution: Under this sliding window definition, we can replace each packet as a

series of payload bytes with adjacent position indices. For instance, we receive a packet of flow

i with a payload of x bytes. Suppose the position index of the last payload byte of the previous

packet is n, then these new bytes will be indexed as n+ 1, n+ 2, . . ., n+x. The naive solution

is to seem these x bytes as x identical items and call our algorithms x times. However, it is

time consuming. We can just run our algorithms one time with the following changes. When

checking expired snapshots in step 1, more than one snapshot may be expired and deleted.

www.manaraa.com

66

When processing an old item, there may be more than one position that need to be snapshot

(when x > εN
3). When performing decrease operation, we perform decrease operation x times,

or until an entry is deleted after k times. We then insert the new item with a counter x− k.

Problem 2. Given a packet stream, a window size N and an error bound ε, how to estimate

the size of any flow with error no more than εN bytes in the sliding window of the most recent

N packets?

Sketch Solution: Under this sliding window definition, let c denote the maximum number

of packet payload bytes. We must assume that c << εN . Otherwise, any deterministic

algorithm must keep each packet’s information in memory to maintain ε-approximation in the

worst case. When c << εN , we just bound the number of flow entries to 3c
ε , and snapshoot

positions for each εN
3 payload bytes of identical packets.

3.2.5 Conclusions

In this research, we address the problem of estimating ε-approximate frequency in data

streams over sliding windows. Two novel deterministic algorithms, Snapshot-Basic and

Snapshot-Advanced are proposed which only need O(1
ε) space. Furthermore, Snapshot-

Advanced is the first efficient algorithm which can achieve O(1
ε) space requirement and only

need O(1) running time to process each item in the data stream and to answer a query. Our

experimental studies show the advantages of our algorithms when processing large-scale data

sets. In addition, as an application of our algorithms, we extend them to solve the problem

of estimating flow size. In the future, we will continue to study the problems of gathering

characteristics of data streams over different types of sliding windows.

3.3 Geometric Estimation over Sliding Windows

3.3.1 Introduction

Geometric computation has been widely studied by many researchers in different domains

and utilized in many different applications in recent decades. Many geometric problems have

www.manaraa.com

67

had optimal solutions. However, the same geometric problem may lack efficient algorithm if it

is reconsidered under data stream model. Recently, data streams have received considerable

attention [56, 18, 82]. If we have sufficient large space and do not have time constraints, we

can precisely answer any geometric queries. However, the issue in computing geometry in large

data streams is that in many cases we probably only have one chance to process each point in

the data streams. We cannot store all data because of constraints in memory space or privacy

issue. Therefore, in these cases we have to gather the interested geometry information with

only one pass.

An even greater challenge is to compute geometry over sliding windows. An algorithm

which works over sliding windows can not only gather the data streams’ geometry informa-

tion, but also update the geometry information by inserting new points and deleting expired

points. Unfortunately, many previous geometry computation algorithms cannot work over

sliding windows. In this research, we are interested in estimating diameter, convex hull and

skyline over sliding windows.

3.3.1.1 Motivation

Geometric computation has many applications, such as computer graphics, computer-aided

design and manufacturing (CAD/CAM), geographic information systems (GIS), integrated

circuit geometry design and verification, etc. Also, geometric computation becomes an im-

portant issue in network security after distributed networks (e.g., sensor networks) are widely

researched and deployed. For instance, in the early age of worm propagation, after receiv-

ing thousands of alarms from distributed network monitors, a geometric map is necessary to

show which regions have been affected so that countermeasures can be executed to interrupt

the worm propagation. Diameter can scale how far the worm has propagated, and convex

hull can reflect the boundary of the affected hosts. Furthermore, geometric computation is

required not only in the domain of geometric coordinates, but also in many other fields in

network security. For instance, network logs contain a lot of hosts which volume, connection

numbers, etc. are recorded, and we want to analyze and detect the dominant hosts in some

www.manaraa.com

68

terms which should have more chance to be attackers. The skyline calculation can be applied

to this purpose.

In recent years, some geometric computation problems are considered under sliding window

models. The advantage of an algorithm which works over sliding windows is that it can get

rid of the stale points and only consider the fresh points, which is meaningful in many cases.

For instance, in an intrusion detection system (IDS), the current status of the network is

usually more important than that of one day ago. The geometry information gathered over

sliding windows may provide a more fresh and smooth view of the data stream. Recently,

several geometry algorithms over sliding windows are proposed [45, 28, 68, 103]. However,

the algorithms for diameter and convex hull estimation over sliding windows still need some

improvement. To the best of our knowledge, skyline estimation over sliding windows still lacks

efficient algorithms. In this research, we are trying to design efficient algorithms for diameter,

convex hull and skyline estimation over sliding windows.

3.3.1.2 Problem Definition

ε-Approximate Diameter Estimation

Suppose we have a stream of points in set P . The diameter of P is defined as

max
∀p,q∈P

(‖p− q‖), (3.18)

i.e., the maximum Euclidean distance between any pair of points in P . Let D and D̂ denote

the true diameter and estimated diameter respectively. A diameter estimation algorithm is an

ε-approximate algorithm if it guarantees

|D − D̂| ≤ εD. (3.19)

www.manaraa.com

69

ε-Approximate Convex Hull Estimation

Suppose we have a stream of points in set P . The convex hull of P is the smallest polygon

that contains all points in P . Let H denote the set of all points within the true convex hull,

and Ĥ denote the set of all points within the estimated convex hull. A convex hull estimation

algorithm is an ε-approximate algorithm if it guarantees

‖H − Ĥ‖ = max
∀p∈H

(min
∀q∈Ĥ

(‖p− q‖)) ≤ εD, (3.20)

where D is the diameter of set P .

ε-Approximate Skyline Estimation

Suppose in d-dimension, we have a stream of points in set P . For two points a =

(a(1), a(2), . . . , a(d)) and b = (b(1), b(1), . . . , b(d)) in P , a dominates b if a(i) ≤ b(i) for 1 ≤ i ≤ d.

The skyline is the set of points which are not dominated by any other point in P . Let S

denote the set of points on the true skyline, and Ŝ denote the set of points on the estimated

skyline. A skyline estimation algorithm is an ε-approximate algorithm if it guarantees that

‖S − Ŝ‖ = max
∀p∈S

(min
∀q∈Ŝ

(‖p− q‖)) ≤ εD, (3.21)

where D is the diameter of set P .

Sliding Window

A sliding window , first introduced by Datar et al. [35], only contains the last N items

in the data stream, which is updated once a new element comes and an old element expires.

Here N is the width of the sliding window.

Problem Statement

In this research, we consider the problems stated as follows:

Given an arbitrary window size N and an error bound ε,

www.manaraa.com

70

• How to maintain ε-approximate diameter estimation of a data stream of points over

sliding windows with size N in one pass?

• How to maintain ε-approximate convex hull estimation of a data stream of points over

sliding windows with size N in one pass?

• How to maintain ε-approximate skyline estimation of a data stream of points over sliding

windows with size N in one pass?

3.3.1.3 Our Contributions

To our knowledge, the best existing algorithm for the problem of estimating ε-approximate

diameter in data streams over sliding windows requires O((1
ε)

d+1
2 log R

ε) space [28], where R is

the ratio between the largest distance and the smallest distance of a pair of points, and d is the

dimension. We first present an improved algorithm which only requires O((1
ε)

d+1
2 logR) space.

We then extend our algorithm to solve convex hull estimation problem over sliding windows,

and prove that the exact diameter algorithm can get the ε-approximate convex hull estimation

directly. Finally, we propose a novel algorithm to estimate skyline which requires O(1
εd

logR)

space.

3.3.2 Diameter Algorithm

3.3.2.1 Chan and Sadjad’s Previous Algorithm

We first briefly review Chan and Sadjad’s algorithm on diameter estimation over sliding

windows [28]. In one-dimension, they proposed an optimal algorithm to maintain the ap-

proximate maximum and minimum. As an instance, to maintain the maximum, let Q =<

q1, q2, . . . , qk > be a subsequence of P such that q1 < q2 < . . . < qk, where P is the set of input

points. Let predQ(p) denote the maximum value in Q that is at most p, and succQ(p) denote

the minimum value in Q that is at least p. Q is called a summary sequence of P if

1. Q is in decreasing order of arrival time.

2. For all p, predQ(p) is not older than p if existing.

www.manaraa.com

71

3. For all p, either ‖p− predQ(p)‖ ≤ εDp or succQ(p) is not older than p.

Here Dp denotes the diameter of all points in P which are not older than p. The summary

sequence Q is enough to maintain the ε-approximate maximum of P . When inserting a new

point p, all points in Q that are not greater than p are removed, and p is put at the beginning

of Q. After 1
ε logR new points are inserted, a refine process is executed to reduce the points

in Q.

Refine in Chan and Sadjad’s Algorithm:
Let q1 and q2 be the 1st and 2nd points in Q respectively. Let q := q2.
while q is not the last element of Q do

Let x and y be the elements before and after q in Q.
if ‖y − x‖ ≤ ε‖x− q1‖

then remove q from Q.
Continue with q equal to y.

To estimate one-dimensional diameter, two similar data structures that approximate the

maximum and minimum of the points are maintained. Chan and Sadjad’s algorithm in one-

dimension needs O(1
ε logR) space and O(1) running time in worst case (by running refine in

a ”lazy” mode). It is proved that this algorithm is optimal in one-dimension. To extend their

algorithm to higher fixed dimensions, they use Θ((1
ε)

d−1
2) lines in d-dimension which guarantee

that for each vector x in d-dimension, the angle between x and some line is at most arccos(1
1+ε).

The one-dimension summary sequence structure is maintained on each line by projecting all

points to the line, and the maximum expansion on these lines are returned as the approximated

diameter, which is an ε-approximate.

Chan and Sadjad observed a problem that naively projecting points to the lines can make

the spread of the one-dimensional points arbitrarily big, since the distance of two projected

points could be much smaller compared with their distance in d-dimension. To solve this

problem, they always keep the location of the two newest points p1 and p2. Let Q(l) =<

q1, q2, . . . , qk > be the summary sequence of projected points on line l. All qi’s that satisfies

‖qi − q1‖ ≤ ε‖p1 − p2‖ are removed before the refine algorithm, since q1 can represent them.

After the removal, the distance between q1 and next point in Q is at least ε‖p1 − p2‖, and the

www.manaraa.com

72

refine algorithm guarantees the size of Q(l) is O(1
ε log R

ε). Consequently, Chan and Sadjad’s

algorithm can maintain ε-approximate of diameter in d-dimension using O((1
ε)

d+1
2 log R

ε) space

and O((1
ε)

d−1
2) running time.

3.3.2.2 Improved Algorithm

Although Chan and Sadjad’s algorithm has significant improvement compared with the

algorithm in [45], it is still not optimal when applied in higher dimensions.

We propose an algorithm which only needs O((1
ε)

d+1
2 logR) space. Similarly, we still main-

tain Θ((1
ε)

d−1
2) lines in d-dimension which guarantee that for each vector x in d-dimension, the

angle between x and some line is at most arccos(1
1+ε). Let L denote the set of these Θ((1

ε)
d−1

2)

lines. The one-dimension summary sequence structure is maintained on each line l ∈ L by

projecting all points to the line l, and the maximum expansion on these lines are returned

as the approximated diameter, which is an ε-approximate. However, we use a different refine

process which is more efficient.

Refine:
Let p1 and p2 be the 1st and 2nd points in P respectively. Let q1 and q2 be the 1st and
2nd projections in Q respectively. Let q := q2.
while q is not the last element of Q do

Let x and y be the elements before and after q in Q.
if ‖y − x‖ ≤ max(ε‖x− q1‖, ε‖p1 − p2‖)

then remove q from Q.
Continue with q equal to y.

Figure 3.13 shows an example of how our refine process works. All points are projected

onto line l, and suppose that currently Q(l) =< q1, q2, . . . , q9 >. During refine, projections q2

and q3 are removed because ‖q4−q1‖ ≤ ε‖p1−p2‖. Similarly, projection q5 is removed because

‖q6 − q4‖ ≤ ε‖q4 − q1‖, and projection q8 is removed because ‖q9 − q7‖ ≤ ε‖q7 − q1‖. After

refine, Q(l) =< q1, q4, q6, q7, q9 >.

Now we prove the correctness of our algorithm, and give the space requirement and running

time.

www.manaraa.com

73

1p

2p

14 qq −⋅ε

1q 2q 3q 4q 5q 6q 7q 8q 9q

14

l

21 pp −⋅ε 17 qq −⋅ε

Figure 3.13 An Example of How Refine Process Works

Theorem 7. Our algorithm can maintain ε-approximate diameter estimation over sliding

windows in d-dimension. Furthermore, it uses O((1
ε)

d+1
2 logR) space7, and the worst running

time to process a new point is O((1
ε)

d−1
2).

Proof. Approximation:

We prove that our algorithm can maintain a sequence Q with the three properties of a

summary sequence.

For property 1, suppose that before inserting a projection p, the current Q is in descendant

order of arrival time. Since all points in Q that are not greater than p are removed, and p

is put at the beginning of Q, Q remains descendant order. The following refine only removes

points from Q, therefore Q is always in decreasing order of arrival time.

Property 2 is also obviously true in our algorithm, since any point’s old predecessor can

only be replaced by newer points.

Now we consider property 3. First, the insertion of new points cannot destroy this property.

If a projection p’s successor is removed by the insertion of a new projection, then the new

projection will be p’s new successor which is newer than p. If p’s predecessor is removed by
7Since the space requirement is independent with the sliding window size N , it is not necessary to delete

expired points. This is also true for our convex hull algorithm and skyline algorithm.

www.manaraa.com

74

the insertion of a new projection, then the new projection will be p’s new predecessor which

is closer to p than previous one. Second, the refine cannot destroy this property. Suppose p’s

predecessor or successor is removed during refine. Let x and y be p’s current predecessor and

successor respectively. Our algorithm guarantees that ‖y − x‖ ≤ max(ε‖x − q1‖, ε‖p1 − p2‖).

Since ‖x− q1‖ ≤ Dp, and ‖p1 − p2‖ ≤ Dp, we have

‖p− x‖ ≤ ‖y − x‖ ≤ εDp. (3.22)

Therefore, property 3 is still true.

Consequently, our algorithm guarantees that Q is a summary sequence. Therefore, suppose

projection p is exactly the maximum value in all projections not older than p on line l ∈ L,

we can use its predecessor to approximate p with error bounded by εDp. Similarly, we can

maintain another sequence which can approximate the minimum value on line l ∈ L. Suppose

projections p and q are the maximum value and minimum value in all projections on line l in

current sliding window respectively, then our algorithm can return p′ and q′ to represent p and

q respectively, and

0 ≤ ‖p− q‖ − ‖p′ − q′‖ = ‖p− p′‖+ ‖q − q′‖ ≤ 2εD, (3.23)

where D is the diameter of all points within current sliding window.

Let pa, pb ∈ P be the furthest pair of points in P , and ‖pa − pb‖ = D. Suppose line l ∈ L

has the least angle θ to line segment pq. Then θ ≤ arccos(1
1+ε). Let pal and pbl denote the

projection of pa and pb on line l. Suppose projections p and q are the maximum value and

minimum value in all projections on line l ∈ L in current sliding window respectively. We get

‖pa − pb‖ =
‖pal − pbl‖

cos θ
≤ (1 + ε)‖pal − pbl‖ (3.24)

≤ (1 + ε)‖p− q‖ (3.25)

≤ (2ε+ 2ε2)D + (1 + ε)‖p′ − q′‖ (3.26)

= (2ε+ 2ε2)‖pa − pb‖+ (1 + ε)‖p′ − q′‖. (3.27)

www.manaraa.com

75

And

‖p′ − q′‖ ≥ 1− 2ε− 2ε2

1 + ε
‖pa − pb‖. (3.28)

We get

0 ≤ ‖pa − pb‖ − ‖p′ − q′‖ ≤ ε
3 + 2ε
1 + ε

‖pa − pb‖ (3.29)

≤ 3ε‖pa − pb‖ (3.30)

= O(ε)‖pa − pb‖ (3.31)

= O(ε)D. (3.32)

Since our algorithm can return ‖p′− q′‖ as the approximated diameter, it is an ε-approximate

algorithm.

Space Requirement:

To maintain maximum projection on line l ∈ L in our algorithm, after running refine,

suppose Q(l) =< q1, q2, . . . , qk >. When 1 ≤ i ≤ k− 2, for any two projections qi and qi+2 that

have one projection between them, we have

‖qi+2 − qi‖ > max(ε‖qi − q1‖, ε‖p1 − p2‖). (3.33)

where p1 and p2 are the 1st and 2nd points in P respectively. Therefore, on line l, when

‖qi − q1‖ ≤ ‖p1 − p2‖, we have

‖qi+2 − qi‖ > ε‖p1 − p2‖. (3.34)

Consequently, on the line segment between q1 and q1+‖p1−p2‖, there are at most 2
ε +1 = O(1

ε)

points after refine process.

Let qj be the first projection after q1 + ‖p1 − p2‖. Then for each j < i ≤ k − 2, we have

‖qi+2 − qi‖ > ε‖qi − q1‖. (3.35)

www.manaraa.com

76

Therefore, with a factor (1+ε), the expansion ‖qi−q1‖ exponentially increases with the number

of projection pairs, and the base is at least ‖p1 − p2‖. Consequently, we have

k − j ≤ 2 log1+ε

D

‖p1 − p2‖
≤ 2 log1+εR = O(

1
ε

logR). (3.36)

Since j is at most O(1
ε), there are at most O(1

ε logR) projections on each line l ∈ L. The

number of lines in L are Θ((1
ε)

d−1
2). Therefore, our algorithm uses O((1

ε)
d+1

2 logR) space.

Running Time:

The proof is similar to that of Theorem 1 in [28], and we skip it to save paper.

3.3.3 Convex Hull Estimation

Our diameter estimation algorithm can be directly applied to estimate convex hull in sliding

windows. For convex hull problem, we maintain a similar data structure on Θ((1
ε)

d−1
2) lines,

and just return the points which are extremes in any line as the vertex of the estimated convex

hull.

Ĥ 1H H 2H

Figure 3.14 Example of H, Ĥ, H1 and H2 in Two-Dimension

Now we prove the correctness of our algorithm, and give the space requirement and running

www.manaraa.com

77

time.

Theorem 8. Our algorithm can maintain ε-approximate convex hull estimation over sliding

windows. Furthermore, it uses O((1
ε)

d+1
2 logR) space, and the worst running time to process a

new point is O((1
ε)

d−1
2).

Proof. Since the convex hull algorithm is exactly the same as the diameter algorithm, it has

the identical space requirement and running time. We only need to prove that this algorithm

can maintain ε-approximate convex hull estimation over sliding windows.

Let H be the real convex hull in current sliding window, and Ĥ be the estimated convex

hull using our algorithm. Obviously, Ĥ ⊆ H. For each line l ∈ L, let p be its extreme, and

we draw a supporting line (or plane) of l through p, and these supporting lines (or planes)

construct a convex hull H1 which contains Ĥ. We expand H1 by moving each edge (or plane)

out with distance ε
1−εD̂ and let H2 denote this new convex hall. From Theorem 7, we know

that D − D̂ = O(ε)D, and we assume that D − D̂ ≤ εD. We have

D̂ ≥ (1− ε)D, (3.37)

and ε
1−εD̂ ≥ εD. Therefore, any vertex on H must be included in H2, and

Ĥ ⊆ H ⊆ H2. (3.38)

Obviously,

‖H − Ĥ‖ ≤ ‖H2 − Ĥ‖ ≤ ‖H1 − Ĥ‖+ ‖H2 −H1‖. (3.39)

If we can prove that the maximum distance between Ĥ and H2 satisfies ‖H2 − Ĥ‖ = O(ε),

then our algorithm can maintain ε-approximate convex hull. Figure 3.14 shows an example of

H, Ĥ, H1 and H2 in two-dimension.

We first consider ‖H1−Ĥ‖. Since Hershberger and Suri [57] have proved that the maximum

gap between Ĥ and H1 is O(ε) in two-dimension, we only consider higher-dimensional spaces.

For any line l′ in d-dimensional space, let θ be the minimum angle to a line l ∈ L. Obviously,

www.manaraa.com

78

u 1HiF

v

iv
Ĥ

G

il

Figure 3.15 Example of Ĥ and H1 in Three-Dimension

θ = O(ε). For each plane G of Ĥ, it has exact d vertices v1, v2, · · · , vd, which are extremes at d

different directions. From each vi, we draw a supporting plane Fi perpendicular to its extreme

direction. These d supporting planes generate an intersection point u which is a vertex in H1.

Figure 3.15 shows an example in three-dimension. Obviously, the angle between G and any

supporting plane is at most θ. Let v be the projection of u on plane G. Since uv ⊥ G, and vi

is an intersection of G and the supporting plane Fi, then 6 uviv is at most the angle between

G and Fi. Therefore, 6 uviv ≤ θ. Since vvi ∈ Ĥ, we have ‖vi − v‖ ≤ D. Consequently,

‖u− v‖ ≤ ‖vi − v‖ · tan θ = O(ε)D. (3.40)

Since the distance between any vertex u ∈ H1 and Ĥ is O(ε)D, we get ‖H1 − Ĥ‖ = O(ε)D.

Now we consider ‖H2 − H1‖. For each vertex ui ∈ H1, it has a corresponding vertex

wi ∈ H2. Then

‖H2 −H1‖ ≤ max(‖wi − vi‖). (3.41)

The length of the projection of line segment viwi on any line l ∈ L is at most ε
1−εD̂ according

to the construction of H2. Since there exists a line l ∈ L which has a angle of at most θ with

www.manaraa.com

79

line segment viwi, we have

‖wi − vi‖ ≤
ε

1−εD̂

cos θ
= O(ε)D. (3.42)

Therefore, ‖H2 −H1‖ = O(ε)D, and ‖H2 − Ĥ‖ = O(ε)D.

3.3.4 Skyline Algorithm

To estimate skyline of the stream of input points P in sliding window, we maintain a

subsequence Q of points which is in descendant order of arrival time. Let Dp be the diameter

of all points in P not older than p, and D̂p be the ε-approximation of Dp using our diameter

approximation algorithm.

The restricted zone Zp of a point p = (p(1), p(2), · · · , p(d)) is the zone bounded by

[bp(i)

wp
cwp, (b

p(i)

wp
c+ 1)wp) in each dimension i = 1, 2, · · · , d, where

wp =
1√
d

2blog εD̂pc (3.43)

is the width of p’s restricted zone. Figure 3.16 shows an example of restricted zones in two-

dimension.

When a new point p comes, we simply insert it to the header of Q. After 1
εd

logR points

are inserted, we run the following refine process.

Refine:
Let p be the first point in Q. Let Ŝ = Φ.
while p is a point of Q do

Use our diameter algorithm to update D̂p.
If p is dominated by current skyline Ŝ, remove p from Q.
If Ŝ intersects with p’s restricted zone, remove p from Q. Otherwise, insert p into Ŝ,

and remove any points in Ŝ which are dominated by p.
Continue with p equal to next point in Q.

Figure 3.16 shows an example of how refine works in two-dimension. Suppose after inserting

several new points, Q = {p1, p2, p3, p4, p5, p6, p7} and pi is newer than pj when 1 ≤ pi < pj ≤ 7.

www.manaraa.com

80

2p

ZZ =
6p

6pw
2pZ

1p3p

4p

31 pp ZZ

Z

6pZ

7
ˆ

pS

6pw

7p4pZ

5p
5pZ

7pZ

7p

7pS

Figure 3.16 Example of Restricted Zones and How Refine Works in
Two-Dimension

When the refine starts, p1 is inserted into Ŝ. Since p2 is dominated by Ŝ, p2 is removed from

Q. Also, p3 is removed from Q because Ŝ intersects with Zp3 . Then p4 is inserted into Ŝ and p1

is removed. Similarly, p5 is removed from Q, and p6 is inserted into Ŝ. Notice that compared

with the newer points, the width of Zp6 doubles since now D̂p6 is larger. p7 is removed from

Q because Ŝ intersects with Zp7 . Finally, after refine process, Q = {p1, p4, p6}, and Ŝ is the

skyline decided by p4 and p6, although the real skyline S contains p4 p5, p6 and p7.

After refine, we have the following facts.

Fact 1. Ŝp is dominated by Sp.

Fact 2. For any pair of points p and q in Q, suppose q is newer than p. Then either Zq ⊆ Zp

or Zq ∩ Zp = Φ.

Proof. Let Zp(i) = [bp(i)

wp
cwp, (b

p(i)

wp
c+ 1)wp) be the expansion of Zp in dimension i (1 ≤ i ≤ d).

Let Zq(i) = [b q(i)wq
cwq, (b

q(i)
wq
c + 1)wq) be the expansion of Zq in dimension i (1 ≤ i ≤ d). We

prove that in each dimension i, either

Zp(i) ∩ Zq(i) = Φ, (3.44)

or

Zq(i) ⊆ Zp(i). (3.45)

www.manaraa.com

81

Since q is newer than p, then D̂p ≥ D̂q. Therefore, wp ≥ wq. Furthermore, since wp
wq

=

2blog εD̂pc−blog εD̂qc, wpwq can only equal 2x, where x is a non-negative integer. Then in dimension

i, we have the following 3 cases.

Case 1: b q(i)wq
cwq < b

p(i)

wp
cwp

We get

b
q(i)

wq
c < b

p(i)

wp
cwp
wq
. (3.46)

Since both sides in inequality (3.46) are integers, we get

b
q(i)

wq
c+ 1 ≤ b

p(i)

wp
cwp
wq
, (3.47)

and

(b
q(i)

wq
c+ 1)wq ≤ b

p(i)

wp
cwp. (3.48)

Therefore, Zp(i) ∩ Zq(i) = Φ.

Case 2: bp(i)

wp
cwp ≤ b

q(i)
wq
cwq < (bp(i)

wp
+ 1)cwp

We get

b
q(i)

wq
c < (b

p(i)

wp
c+ 1)

wp
wq
. (3.49)

Since both sides in inequality (3.49) are integers, we get

b
q(i)

wq
c+ 1 ≤ (b

p(i)

wp
c+ 1)

wp
wq
, (3.50)

and

(b
q(i)

wq
c+ 1)wq ≤ (b

p(i)

wp
c+ 1)wp. (3.51)

Therefore, Zq(i) ⊆ Zp(i).

Case 3: b q(i)wq
cwq ≥ (bp(i)

wp
+ 1)cwp

Obviously we get Zp(i) ∩ Zq(i) = Φ.

Therefore, either Zq ⊆ Zp or Zq ∩ Zp = Φ.

www.manaraa.com

82

Fact 3. After refinement, for any two points p and q in Q, their restricted zones have no

overlap, i.e., Zp ∩ Zq = Φ.

Proof. Suppose before refinement, there are two points p and q in Q, which restricted zones

have overlap. Without loss of generality, suppose q is newer than p. From Fact 2, we know

that q’s restricted zone is included in p’s restricted zone. Our refinement will remove point

p if q is still in Q. Therefore, after refinement, any two points in Q have no overlap in their

restricted zones.

Now we prove the correctness of our algorithm, and give the space requirement. We set

the design of an efficient data structure for our algorithm as our future work.

Theorem 9. Our algorithm can maintain ε-approximate skyline estimation over sliding win-

dows. Furthermore, it uses O(1
εd

logR) space.

Proof. Approximation:

Obviously, estimation error is introduced only in refine process when a point p is removed

from Q, while p is actually on the skyline S. However, the error is bounded in our algorithm.

Since D̂p ≤ Dp, then

wp =
1√
d

2blog εD̂pc ≤ 1√
d

2log εDp =
1√
d
εDp. (3.52)

Let D(Zp) be the diameter of Zp, then

D(Zp) =
√
d · wp ≤ εDp. (3.53)

For any point q ∈ S, it is removed if and only if Ŝp intersects with Zq. Therefore, the distance

from p to Ŝp is at most D(Zp) which is no more than εDp.

With the sliding of current window, before p expires, if Ŝp does not dominate p, it tends

to be closer to p. Therefore, the error distance from p to Ŝp never exceeds εDp.

Space Requirement:

Let p be the first point and D0 be the minimum distance between any pair of points

in P . Let p be the center, and we draw a set of virtual zones with width 1√
d
2iD0, where

www.manaraa.com

83

0RD

02D

…… p

022 D

024 D

⎡ ⎤
0

log2
2

1 DRd

Figure 3.17 Example Virtual Zones in Two-Dimension

i = 1, 2, · · · , dlog
√
dRe. Since R is the ratio between the largest distance and the smallest

distance of a pair of points, then all points in the data stream are included in the largest

zone with width 1√
d
2dlog

√
dReD0. Figure 3.17 shows an example of such a set of zones in

two-dimension space. The possible widths of restricted zones for all points can only be in set

{ 1√
d

2blog εD0c,
1√
d

2blog εD0c+1, · · · , 1√
d

2blog εD0c+dlog
√
dRe−1}. (3.54)

Let Va(i) be the volume of the virtual zone with width
√
d2iD0. Let Vb(i) be the volume of

the restricted zone with width 1√
d
2blog εD0c+i. We have

Va(i) = (
1√
d

2iD0)d, (3.55)

and

Vb(i) = (
1√
d

2blog εD0c+i)d. (3.56)

Any point which restricted zone’s width is 1√
d
2blog εD0c+i must be within the virtual zone with

www.manaraa.com

84

width 1√
d
2i+1D0. From Fact 3, after refinement, any two points’ restricted zones cannot have

overlap. Therefore, the number of points which restricted zone’s width is 1√
d
2blog εD0c+i is at

most
Va(i+ 1)
Vb(i)

= (
2D0

2blog εD0c
)d ≤ (

2D0

2log εD0−1
)d = (

4
ε

)d. (3.57)

Therefore, when d is a small constant, the number of points after refinement is at most

(
4
ε

)ddlog
√
dRe = O(

1
εd

logR). (3.58)

Here we provide a lower bound of space requirement to maintain ε-approximate skyline

estimation over sliding windows.

Theorem 10. The lower bound of space requirement to maintain ε-approximate skyline esti-

mation over sliding windows is Ω(1
εd−1 log εR).

Proof. We construct a special case to show that the lower bound of space requirement to

maintain ε-approximate skyline estimation over sliding windows is Ω(1
εd−1 log εR). Let p and q

be the pair of points which have the minimum distance D0, and hence the maximum distance

of a pair of points is RD0. Let p be the center, and draw a series of surface si with radius

1
εD0, 1

ε (1 + ε)D0 + δ, · · · , 1
ε (1 + ε)iD0 + iδ, · · · , until the radius reaches 1√

dRD0
. Here δ is a

infinitely small quantity. It is guaranteed that the maximum distance of a pair of points is

RD0. On each surface si, we evenly distribute O(1
εd

) points. Obviously, all these points in

the same surface do not dominate each other. These points are placed carefully so that the

distance of any point to the skyline by other points are at least (1 + ε)iD0 + δ. Suppose p is

the newest point and the points on surface si become older with the increase of i. Therefore,

all these points must be kept to guarantee ε-approximate. There are total O(log εR) surfaces,

and each surface has O(1
εd−1) points. Consequently, we have the lower bound of Ω(1

εd−1 log εR).

www.manaraa.com

85

0D q

p

0
1 D
ε

δ
ε

ε 21)1(0
2 ++ D

δ
ε

ε ++ 0
1)1(D

…
δ

ε
ε iDi ++ 0

1)1(

0
1 RD≈

…

0d

Figure 3.18 Example Virtual Zones in Two-Dimension

3.3.5 Conclusions

In this research, we addressed several ε-approximate geometric estimation problems in data

streams over sliding windows. We proposed a diameter approximate algorithm which only uses

O((1
ε)

d+1
2 logR) space, and the worst running time to process a new point is O((1

ε)
d−1

2). We

proved that our diameter algorithm can be applied to estimate convex hull over sliding windows.

Finally, we studied the skyline estimation problem over sliding windows, and proposed a novel

algorithm which uses O(1
εd

logR) space. A lower bound of this problem is provided. In the

future, we will continue to study the geometric estimation problems over sliding windows.

www.manaraa.com

86

CHAPTER 4. RESEARCH IN ATTACK ATTRIBUTION PART II:

TRACEBACK TECHNIQUES

4.1 Stepping Stone Attack Attribution

4.1.1 Introduction

The number of network based attacks is growing because attackers can very easily hide

their identities, and thereby reduce the chance of being captured and punished. It has become

difficult and complicated to discover the true identity of attackers when they relay their attacks

through stepping stones (intermediary hosts). The attack flow from the origin of the attack

may travel through a chain of stepping stones before it reaches the victim. It is difficult for

the victim to learn anything about where the attack comes from except that she can see the

attack traffic from the last hop of the stepping stone chains. Therefore, it is desirable to design

effective and efficient stepping stone attack detection schemes to attribute the attackers.

Several approaches have been designed to detect stepping stone attacks [23, 39, 98, 100,

106, 107, 108, 113, 119]. If the contents in the connections in the network are plain-text (i.e.

unencrypted), it may be used to trace back to the origin of the attacker. Staniford-Chen and

Heberlein [98] used thumbprints which are short summaries of the contents of a connection.

The thumbprints can be compared to determine whether two connections contain the same

text and are therefore likely to be part of the same connection chain. Wang et al. [108]

injected detectable watermarks into the unencrypted traffic echoed back to the attacker, so

that the attack can be traced back. For encrypted stepping stone connections, content based

approaches cannot work any more. Neither do packet-size based approaches, if all packets are

padded to the same size. Zhang and Paxson [119] proposed the first timing-based method which

www.manaraa.com

87

only uses the packets’ arrival time information. After that, several timing-based approaches

were proposed [23, 39, 100, 106, 107, 113]. However, the attacker still can conceal its identity

by destroying the time correlation between stepping stone connections. None of the current

methods can effectively defend against delay and chaff perturbations simultaneously.

In this research, we discuss two different scenarios when delay and chaff perturbations

exist, and propose three schemes [118]. We provide the upper bounds on the number of

packets required to confidently detect stepping stone connections from non-stepping stone

connections with any given probability of false attribution. We compare our schemes with

previous approaches, and experimental results show that our schemes are more effective in

these two scenarios.

4.1.2 Problem Definition

To avoid detection, an attacker may attack the victim using an encrypted link through

several stepping stones, where the encrypted attack packets may show different contents among

stepping stones while being padded to the same size. This indicates that one cannot use packet

contents or packet sizes to detect and identify the attacker.

Several approaches have been proposed which only use the timing information. However,

the attacker may evade detection by perturbing the timing information. It may introduce

random delay before each packet departs from a stepping stone, or insert superfluous packets

as chaff into the original attack flow on a stepping stone. In this research, we mainly consider

two scenarios on stepping stone attribution problem:

Scenario 1: Only delay perturbation is introduced and no chaff perturbation exists.

Scenario 2: Delay and chaff perturbations exist simultaneously.

Not only can the attacker introduce delay and chaff perturbations, but the network itself

may produce such perturbations. When packets travel through the network, the propagation

delay of these packets is unavoidable. In anonymous networks, it is common that the attack

connection is captured somewhere with several other connections which cannot be differentiated

from the attack flow. Then these normal connections can seem to be as chaff to the attack

www.manaraa.com

88

Table 4.1 Previous Schemes’ Assumptions

Scheme 1 2 3 4

ON/OFF Yes No – Yes

Deviation No No – Yes

IPD No No – Yes

Watermark No Yes – Yes

State-Space Yes No – Yes

Multiscale Yes Yes Yes Yes

Detect-Attacks & Detect-Attacks-Chaff Yes Yes Yes Yes

flow. Therefore, the delay and chaff perturbations introduced to the attack flow may have two

sources: one is the attacker, and the other is the network itself. No matter where the delay

and chaff perturbations come from, we propose our solutions under the following assumptions:

1) The skew between the clocks of hosts where packets are captured is known.1

2) The total delay must be in the range of [0, ∆), where ∆ is the maximum probable

delay2.

3) The chaff perturbation is independent with the original flow.

4) No original packet is dropped, which means that each original packet will appear in both

sides of the stepping stone connection.

Table 4.1 shows previous schemes’ assumptions together, where ‘–’ means that these schemes

do not consider the scenario of chaff perturbation.

4.1.3 Our Schemes

To simplify the description of our schemes, let flow A denote the flow which contains only

the original packets, and flow B denote a flow captured in the network. Flow B may be

unrelated to flow A, or a related flow which contains all the original packets with or without

chaff perturbation. Considering flows A and B in a stepping stone connection chain, our

knowledge of the directional information between A and B has three possibilities:
1The hosts’ clocks are different from each other. For simplicity, we assume the skew between different clocks

is known such that we can compare the packets’ timestamps from different hosts.
2In fact, the delay should be in the range of [∆min, ∆max), where ∆min is the minimum probable delay and

∆max is the maximum probable delay and 0 ≤ ∆min < ∆max < ∞. For instance, if the two flows are linked
through a satellite, ∆min may be more than 1 second. However, we can change the delay range to [0, ∆) by
skewing one flow left or right by ∆min, and setting ∆ = ∆max−∆min. To simplify the analysis in this research,
we use the delay range [0, ∆) instead of [∆min, ∆max).

www.manaraa.com

89

1) A can only be an upstream flow of B;

2) A can only be a downstream flow of B;

3) A can be either B’ upstream or downstream flow.

Sometimes we know the directional information. For instance, if flow A is the attack flow

received by the victim, then B can only be A’s upstream flow if they are correlated. If flow

A is the response flow sent by the victim, then B can only be the downstream flow of A if

they are correlated. However, if we do not know much about the causality of links, we have

to consider both possibilities of flows sequence. To simplify the description of our schemes, we

suppose that we have enough information that flow A has to be B’s upstream flow if they are

in a stepping stone connection chain. We expand our schemes to the other two cases later in

this section.

4.1.3.1 Scheme S-I (for Scenario 1)

According to the assumption that maximum probable delay is bounded, each original packet

i in flow A with arrival time ui must have a corresponding packet in flow B within [ui, ui+∆).

In our scheme, we use ∆′ to estimate ∆, because ∆ may not be known by our scheme, and ∆′

should be no less than ∆.

Scheme Description:

First, we set ∆′ using foreknowledge. For the first observed original packet in flow A with

arrival time u1, we select the first arrival packet after u1 in flow B as its corresponding packet.

After the first corresponding packet is determined, each following original packet’s correspond-

ing packet is the successor of the previous original packet’s corresponding packet. We observe

whether all original packets’ corresponding packets are in their probable arrival time range. If

so, report CORRELATED and terminate. Otherwise, we repeat the observation with deferring

each original packet’s corresponding packet to the next one until we report CORRELATED,

or until the arrival time difference between an original packet and its corresponding packet is

larger than ∆′ and we report UNCORRELATED.

In this scenario, if ∆′ ≥ ∆, the false negative rate of scheme S-I is 0%. Now we provide

www.manaraa.com

90

a tight bound on the number of original packets that are required to be observed to achieve

any given bounded false positives. Blum et al. [23] provide the upper bounds of their schemes.

They first analyze the bounds by assuming that any normal flow can be modeled as a Poisson

process with fixed Poisson rate. They then relax this assumption by assuming that any normal

process can be modeled as a sequence of Poisson processes with varying rates and over varying

time periods. In our analysis, we follow their steps and derive the expression of a tight bound.

We must point out that the importance of the bound is not on the detailed value, but on

the limits of the ability of attackers to evade detection by simply introducing delay and chaff

perturbations.

We first assume all connections behave as Poisson processes and then generalize the as-

sumption as Blum et al. do. Suppose original flow A and the other flow B are two unrelated

flows with fixed Poisson rate λA and λB respectively. We begin to observe from time 0 and

observe n packets in original flow A. Let u1, u2, · · · , un denote each original packet’s arrival

time in flow A. Then the probability function of these n packets arrival times is:

f(u1, · · ·un) =

 λnAe
−λAun , if un ≥ · · · ≥ u1 ≥ 0 (4.1a)

0, otherwise. (4.1b)

Let v1 be the first packet’s arrival time after u1 in flow B, and v2, v3, · · · , vm be the following

packets’ arrival times. Then the conditional probability function of these m packets arrival

time on u1, · · · , un is:

f(v1, · · · , vm|u1, · · · , un) = λmB e
−λB(vm−u1), if vm ≥ · · · ≥ v1 ≥ u1 ≥ 0 (4.2a)

0, otherwise. (4.2b)

Therefore we can obtain the joint probability function of u1, · · · , un, v1, · · · , vm:

f(u1, · · · , un, v1, · · · , vm)

= f(v1, · · · , vm|u1, · · · , un)f(u1, · · · , un). (4.3)

www.manaraa.com

91

Let Zn denote the event that an unrelated flow is reported correlated by our scheme when

we observe n original packets. Therefore the event Zn’s probability P (Zn) is equal to the false

positive rate, and

P (Zn) =
∫
S

(1)
n ∪···∪S

(∞)
n

f(u1, · · · , un, v1, · · · , v∞)

dv∞ · · · dv1dun · · · du1 (4.4)

≤
∫
S

(1)
n ∪···∪S

(n)
n

f(u1, · · · , un, v1, · · · , v2n−1)

dv2n−1 · · · dv1dun · · · du1 (4.5)

+(1−
n∑
k=0

(λB∆′)k

k!
e−λB∆′),

where

S(i)
n =



0 ≤ u1 ≤ · · · ≤ un <∞

u1 ≤ v1 ≤ · · · ≤ v2n−1 <∞

u1 ≤ vi ≤ u1 + ∆′

· · ·

un ≤ vn+i ≤ un + ∆′


(4.6)

is the integral field when the ith packet after u1 in flow B is selected as the first original packet’s

corresponding packet.

It is clear that the false positive rate decreases as the number of original packets we observe

increases. For any given false positives, we may calculate the bound of the needed number

of packets. Furthermore, we can prove that the bound of S-I is tighter than that of Detect-

Attacks[23], which means S-I needs less packets than Detect-Attacks to achieve the same false

positive rate.

Although it is difficult to calculate the bound using above formulas, we simulate S-I over

millions of Poisson flows and obtain a computer simulated bound shown in Figure 4.1(a) when

false positive rate is set to 1%. We make the following observations:

• For a given λA and ∆′, the maximum bound occurs when λB ≈ λA.

• For a given λA and λB , the bound increases quickly with the increase of ∆′.

www.manaraa.com

92

• When λA∆′ ≤ 7.5, using less than 50 packets can achieve 1% false positive rate.

• Even when λA∆′ = 25, using less than 450 packets can achieve 1% false positive rate.

2.
5 7.

5 12
.5 17

.5 22
.5

2.5
7.5

12.5
17.5

22.5

0

50

100

150

200

250

300

350

400

450

bound

λB∆'λA∆'

400-450
350-400
300-350
250-300
200-250
150-200
100-150
50-100
0-50

(a) Bound of S-I when False Positive Rate is set to 1%

2.
5

10 17
.5

25

2.57.512.517.522.5
0

500

1000

1500

2000

2500

3000

bound

λB∆'

λA∆'

2500-3000
2000-2500
1500-2000
1000-1500
500-1000
0-500

(b) Bound of S-II when False Positive Rate is set to
1%

Figure 4.1 Bounds of S-I and S-II

4.1.3.2 Scheme S-II (for Scenario 2)

Scheme Description:

First, we set ∆′ using foreknowledge. For each original packet i in flow A with arrival time

ti, we select the first arrival packet in the range [ti, ti + ∆′) in flow B as its corresponding

packet. If the packet has been selected by the previous original packet, select the first unselected

packet. If we cannot select a corresponding packet in flow B for an original packet in flow A,

we report UNCORRELATED. Otherwise, we report CORRELATED.

Let vi be the arrival time of the ith original packet’s corresponding packet in flow B. Then

v1 only depends on u1, and vi only depends on vi−1 and ui when i ≥ 1, so

f(v1|u1) =

 λBe
−λB(v1−u1), if v1 ≥ u1 ≥ 0 (4.7a)

0, otherwise, (4.7b)

and

f(vi|ui, vi−1) =

www.manaraa.com

93


λBe

−λB(vi−ui), if vi ≥ ui ≥ vi−1 (4.8a)

λBe
−λB(vi−vi−1), if vi > vi−1 > ui (4.8b)

0, otherwise. (4.8c)

We then obtain the joint probability function of u1, · · · , un, v1, · · · , vn:

f(u1, · · · , un, v1, · · · , vn)

= f(v1, · · · , vn|u1, · · · , un)f(u1, · · · , un) (4.9)

= f(vn|un, vn−1)f(vn−1|un−1, vn−2) · · · f(v2|u2, v1)

f(v1|u1)f(u1, · · · , un). (4.10)

Let Zn denote the event that an unrelated flow is reported correlated by our scheme when

we observe n original packets. Therefore, the event Zn’s probability P (Zn) is equal to the false

positive rate, and

P (Zn) =
∫
Sn

f(u1, · · · , un, v1, · · · , vn)dvn · · · dv1dun · · · du1, (4.11)

where

Sn =



0 ≤ u1 ≤ · · · ≤ un <∞

v1 ≤ · · · ≤ vn <∞

u1 ≤ v1 ≤ u1 + ∆′

· · ·

un ≤ vn ≤ un + ∆′


(4.12)

is the integral field.

Besides this tight bound on the number of original packets needed, we may also provide a

loose bound:

Theorem 11.

P (Zn) ≤ (1− e−λB∆′)n, for n ≥ 1. (4.13)

www.manaraa.com

94

Proof. We use mathematical induction to prove this theorem. First,

P (Z1) = 1− e−λB∆′ . (4.14)

Suppose that for i ≥ 1,

P (Zi) ≤ (1− e−λB∆′)i, (4.15)

then

P (Zi+1) ≤ P (Zi) · P (at least one packet appears within

[ui+1, ui+1 + ∆′) in flow B|Zi) (4.16)

≤ (1− e−λB∆′)i(1− e−λB∆′) (4.17)

= (1− e−λB∆′)i+1. (4.18)

When we observe log
1−e−λB∆′ δ packets, the false positive rate is at most δ.

We simulate S-II on millions of Poisson flows generated by computer and get a computer

simulated bound shown in Figure 4.1(b) when false positive rate is set to 1%. We make the

following observations:

• For a given λA and ∆′, the bound increases quickly with the increase of λB .

• For a given λA and λB , the bound increases quickly with the increase of ∆′.

• For a given λB and ∆′, the bound decreases with the increase of λA.

4.1.3.3 Scheme S-III (for Scenario 2)

Though the scheme S-II is simple enough, it requires that ∆′ ≥ ∆. If our foreknowledge

cannot tell us what ∆ should be, we have to set ∆′ to a large ‘safe’ value, for instance, 100

seconds. However, according to our analysis on the bound of number of needed packets, as

∆′ increases, the needed number of packets increases quickly, which means that for a given

number of packets, the false positives rise with the increase of ∆′.

www.manaraa.com

95

Here we propose a scheme to reduce false positives when the number of original packets is

limited and ∆′ is large. According to the probable delay bound, each packet of the original flow

has a limited number of probable candidate packets in the other flow. That is, for an original

packet i with arrival time ui, only packets whose arrival times are in the range [ui, ui + ∆) on

the other flow have the possibility to be the corresponding packet. Since the number of the

original packets in flow A is limited, and each packet’s number of candidates in flow B is also

limited, we may reconstruct a limited number of probable flows from flow B with the same

number of packets as the original flow A. The real corresponding flow of the reconstructed ones

must be one of them. However, our goal is not to try and find the real corresponding flow, but

to conclude whether the two flows are correlated or not. We then calculate the correlation of

each probable flow with the original flow A using a certain correlation criterion, and use the

largest correlation value to make the final decision.

Scheme Description:

First, we use Scheme S-II on the two flows and get a report. If it is reported uncorrelated,

we return UNCORRELATED. Otherwise, we find all probable corresponding flows and choose

a certain criterion to compute the correlation value between these two flows. We then make a

decision.

This scheme is quite time consuming. Let n denote the total packets number in original

flow A, and ni denote the number of candidate packets for each original packet i. Let N be

the total number of probable corresponding flows. Then

N ≈
n∏
i=1

ni, (4.19)

which is unacceptable in most cases. Therefore, for certain criteria, we hope to find some fast

solutions.

We find that when we choose deviation as the criterion, we may construct a fast solution

which reduces the number of probable corresponding flows required to calculate correlation

to no more than
∑n

i=1 ni. Let v
(j)
i denote the ith corresponding packet’s arrival time in

the jth probable corresponding flow. Then the deviation between flow A and the probable

www.manaraa.com

96

corresponding flow j is defined by3

dev(j) =
1
n

n∑
i=1

(v(j)
i − ui)− min

1≤i≤n
(v(j)
i − ui), (4.20)

and the deviation between flow A and B is defined by

dev = min
1≤j≤N

(dev(j)). (4.21)

Fast Solution:

1 For each original packet i in flow A with arrival time ui, we select the first arrival packet in the range [ui,
ui + ∆′) in flow B as its corresponding packet. If the packet has been selected by the previous original
packet, then select the first unselected packet. This obtains the initial probable corresponding flow.

2 We search the original packet which has the minimum arrival time difference from its corresponding packet.
This original packet updates its corresponding packet and selects the next packet in the flow. If the new
corresponding packet to be selected has been selected by the next original packet, the next original packet
in the flow needs to update its corresponding packet to the next one, and so on. We then obtain a new
probable corresponding flow.

3 Repeat Step 2 until one of the original packets cannot select a corresponding packet.

Using the fast solution, we obtain a series of probable corresponding flows which are about∑n
i=1 ni. Furthermore, because each selected probable corresponding flow differs from the

previous one with only 1 or several packets, then dev(j) can be derived from dev(j−1) easily. It

can be proved that this fast solution achieves the same performance as the original scheme for

the deviation criterion.

Theorem 12. If deviation is chosen to be the correlation criterion, the fast solution achieves

the same performance as the original scheme.

Proof. Let u1, u2, · · · , un be the original packets arrival time of flow A, w1, w2, · · · , wm be the

packets arrival time of flow B, and v1, v2, · · · , vn be the packets’ arrival time of the correspond-

ing flow which achieves the minimum deviation. According to the deviation definition, if the

minimum gap min1≤i≤n(vi − ui) = wk − uj , which means that the minimum gap is achieved

by the pair of original and corresponding packet (uj , wk), then the corresponding flow with
3We provide the definition of deviation here because it is slightly different with that in [113].

www.manaraa.com

97

the minimum deviation must exactly be the flow that each original packet i chooses the first

appeared packet in the range [ui+wk−uj , ui+∆) which has not been chosen by its predecessor.

The fast solution traverses all the probable combination of the pair of packets (uj , wk) with

minimum gap, so it really achieves the corresponding flow with the minimum deviation.

4.1.3.4 Complexity Analysis

Suppose we observe n packets in flow A and m packets in flow B. In the worst case of

scheme S-I, the first packet in A has up to m candidate packets, so we must check such many

rounds. In each round, we must check up to n packet pairs. Therefore the time complexity in

the worst case is O(n ·m). For fast solution of S-III, directly from what we discussed before,

the time complexity is also O(n · m). However, both schemes normally have much better

performance than their worst cases. For S-II, we need to select the corresponding packets

among m packets in flow B, and each packet in B only needs to be checked once. Therefore

the time complexity in the worst case is O(m).

4.1.3.5 Directional Information Discussion

In the above description of our schemes, we assume that we know the directional information

of case 1 that the original flow A has to be B’s upstream flow if they are in a stepping stone

connection chain. It is very simple to expand our schemes to the other two cases. In case 2

that we can confirm A is a downstream flow of B, we just simply add ∆′ to the arrival time of

each packet in flow B, and then execute the same schemes. In case 3 that we cannot confirm

the direction between A and B, we simply run the schemes two times, one with directional

information of case 1, the other with directional information of case 2. If both of the results

are UNCORRELATED, we report UNCORRELATED. Otherwise, we report CORRELATED.

www.manaraa.com

98

Table 4.2 Parameters Set

Scheme Parameter Value

Tidle 0.5s

δ 80ms

ON/OFF γ 0.3

γ′ 0.02

mincsc 2

Deviation Threshold 6s

s 20

IPD δcp 0.9

δ 0.6

State-Space weight updating rate 0.1

Threshold 0.5

ψ bump

Multiscale s 64s

Threshold 0.7

Detect-Attacks & ∆ 20s

Detect-Attacks-Chaff δ 0.01

S-I, S-II & S-III ∆′ 30s

S-III Threshold 6s

4.1.4 Experimental Evaluation

To make comparison, we implement the following six approaches: ON/OFF [119], Deviation

[113], IPD [107], State-Space [100], Multiscale [39] and Detect-Attacks/Detect-Attacks-Chaff 4

[23]. We do not compare these passive schemes with Watermark which is the only active

approach. We compare these six present schemes with scheme S-I in Scenario 1, and with

schemes S-II and S-III in Scenario 2.

We list the values of all used parameters of these nine approaches in Table 4.2. These

values are the original values used by the authors or typical values if the authors do not clearly

indicate. We omit the meaning of these parameters which may be found in their original papers.

Table 4.2 also shows that S-I and S-II have the smallest number of control parameters, so

they can be easily implemented. In contrast, ON/OFF has five control parameters, and it is

hard to train and test whether they are set to the optimum values.

In our experiments, we use the data set of Auckland-IV traces in NLANR PMA Daily

Traces Archive [2]. We extract 293 Telnet/SSH flows which have more than 1000 packets,
4Detect-Attacks is used in experiments for Scenario 1, and Detect-Attacks-Chaff is used in experiments for

Scenario 2.

www.manaraa.com

99

and totally 1.3 million packets. These flows’ packet rate distribution is shown in Figure 4.2.

However, most of these flows are not overlapped, and therefore any scheme with Assumption

1 can get high score, which is unfair to other schemes. Therefore, in our experiments, we

randomly adjust the flows’ start time such that they always overlap. Furthermore, in all our

experiments, we only consider such pairs of test flows that the one seemed as original flow A

is totally covered by the other one. We have also built a stepping stone attack attribution

test-bed environment consisting of 40 machines and developed an automated interactive traffic

(Telnet, SSH, etc.) generator [111]. We modified telnetd and sshd source code so that they

can introduce random delay and chaff perturbations with various controllable distributions

into stepping stone traffic.

104

51 49

29
23

15
10 10

2

0~0.5 0.5~1 1~1.5 1.5~2 2~2.5 2.5~3 3~3.5 3.5~4 4~4.5

Packet Rate (packet/second)

N
um

be
r o

f F
lo

w
s

Figure 4.2 Packet Rate Distribution

4.1.4.1 Experiments Set 1

This set of experiments is designed to answer the following questions:

1) How effectively can different schemes detect stepping stones in Scenario 1 with different

delay perturbations added?

2) How effectively can different schemes detect stepping stones in Scenario 2 with different

chaff perturbations added?

For scenario 1, we add uniform distributed delay to each original flow and get 293 delayed

flows. Then we calculate the correlation between each original flow and each delayed flow.

www.manaraa.com

100

0

10

20

30

40

50

60

70

80

90

100

2 6 10 14 18

Maximum Delay (second)

Fa
ls

e
N

eg
at

iv
e

R
at

e
(%

)

ON/OFF

Deviation

IPD

Multiscale

State-Space

Detect-Attacks

S-I

(a) False Negative Rate

0

10

20

30

40

50

60

2 6 10 14 18

Maximum Delay (second)

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
)

ON/OFF

Deviation

IPD

Multiscale

State-Space

Detect-Attacks

S-I

(b) False Positive Rate

Figure 4.3 Scenario 1 with Different Delay Perturbations

Thus we get 293 stepping stone connection pairs and 66, 140 non-stepping stone connection

pairs. We consider 10 different kinds of uniform delays, and their maximum delays increase

from 2 seconds to 20 seconds with a step of 2 seconds. To avoid the influence of different packets

number of flows, each scheme must return its result after they receive 250 original packets.

Figure 4.3 shows the false negative rates and false positive rates of these seven approaches. We

make the following observations:

• Only Detect-Attacks and S-I can detect all stepping stone attacks. However, the false positive rate

of Detect-Attacks is much higher than that of S-I. The reason is that S-I has a tighter bound than

Detect-Attacks.

• Using only 250 packets, S-I can achieve as low as 0.82% false positive rate even when the maximum delay

is 20 seconds.

To simulate Scenario 2 that delay and chaff perturbations exist simultaneously, we first add

uniform distributed delay with maximum of 10 seconds. We then generate Poisson distributed

chaff with packet rate 0.5 packet/s, 1 packet/s, ..., 4 packet/s. For each scheme, 1000 original

packets are used. Figure 4.4 shows the false negative rates and false positive rates of these

eight approaches. We make the following observations:

• Only S-II and S-III can detect all stepping stone attacks. S-III is a bit better than S-II.

• ON/OFF and Deviation always report there is no attack.

www.manaraa.com

101

0

10

20

30

40

50

60

70

80

90

100

0.5 1.5 2.5 3.5

Packet Rate of Poisson Distributed Chaff (packet/second)

Fa
ls

e
N

eg
at

iv
e

R
at

e
(%

)

ON/OFF
Deviation
IPD
Multiscale
State-Space
Detect-Attacks-Chaff
S-II
S-III

(a) False Negative Rate

0

10

20

30

40

50

60

70

80

90

100

0.5 1.5 2.5 3.5
Packet Rate of Poisson Distributed Chaff

(packet/second)

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
)

ON/OFF
Deviation
IPD
Multiscale
State-Space
Detect-Attacks-Chaff
S-II
S-III

(b) False Positive Rate

Figure 4.4 Scenario 2 with Different Chaff

• Detect-Attacks-Chaff totally loses detecting ability. The reason is that the added chaff perturbation

exceeds its detection bound.

• The false positive rates of S-II and S-III increase with the packet rate of chaff, which complies our

previous analysis. They need more original packets to achieve arbitrary low false positives when chaff

perturbation is heavy.

4.1.4.2 Experiments Set 2

This set of experiments is designed to answer the following questions:

1) How effectively can different schemes detect stepping stones in Scenario 1 with different

number of available original packets?

2) How effectively can different schemes detect stepping stones in Scenario 2 with different

number of available original packets?

For scenario 1, we add uniform distributed delay with maximum of 10 seconds. The number

of available packets increases from 50 to 1000. Figure 4.5 shows the false negative rates and

false positive rates of these seven schemes. We make the following observations:

• Deviation, Detect-Attacks and S-I can detect all stepping stone attacks. However, the false positive rates

of Deviation and Detect-Attacks are higher than that of S-I.

• Using only 150 packets, S-I can achieve as low as 0.54% false positive rate.

www.manaraa.com

102

0

10

20

30

40

50

60

70

80

90

100

50 150 250 350 450 550 650 750 850 950

Number of Original Packets Used to Attribute

Fa
ls

e
N

eg
at

iv
e

R
at

e
(%

) ON/OFF

Deviation

IPD

Multiscale

State-Space

Detect-Attacks

S-I

(a) False Negative Rate

0

10

20

30

40

50

60

70

80

90

100

50 150 250 350 450 550 650 750 850 950

Number of Original Packets Used to Attribute

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
) ON/OFF

Deviation

IPD

Multiscale

State-Space

Detect-Attacks

S-I

(b) False Positive Rate

Figure 4.5 Scenario 1 with Different Number of Original Packets

0

10

20

30

40

50

60

70

80

90

100

50 150 250 350 450 550 650 750 850 950

Number of Original Packets Used to Attribute

Fa
ls

e
N

eg
at

iv
e

R
at

e
(%

)

ON/OFF

Deviation

IPD

Multiscale

State-Space

Detect-Attacks-Chaff

S-II

S-III

(a) False Negative Rate

0

10

20

30

40

50

60

70

80

90

100

50 150 250 350 450 550 650 750 850 950

Number of Original Packets Used to Attribute

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
)

ON/OFF

Deviation

IPD

Multiscale

State-Space

Detect-Attacks-Chaff

S-II

S-III

(b) False Positive Rate

Figure 4.6 Scenario 2 with Different Number of Original Packets

www.manaraa.com

103

To simulate Scenario 2 that delay and chaff perturbations exist simultaneously, we use the

real flows as the source of chaff perturbation. We chose the longest 30 flows from these 293

original flows. We combine one of the residual 263 flows with one of these 30 flows together and

get 263× 30 = 7, 890 combined flows. We then add uniform distributed delay with maximum

of 10 seconds to these combined flows. We calculate the correlation between each original flow

and each combined flow. In these combined flows, the packets from one of the 30 flows may be

seemed as chaff perturbation to the other flow. We finally get 7, 890 stepping stone connection

pairs and 1, 649, 870 non-stepping stone connection pairs. Figure 4.6 show the false negative

rates and false positive rates of these eight approaches. We make the following observations:

• Only S-II and S-III can detect all stepping stone attacks. The false positive rates of S-II and S-III

totally overlap in Figure 4.6(b). It means that when used in real flows, S-II is good enough and we need

not to use S-III which is more time consuming.

• Detect-Attacks-Chaff totally loses detecting ability.

• Multiscale can achieve 10% false negative rate when using more than 500 packets. However, its false

positive rate is about 40%.

• S-II and S-III can achieve about 1% false positive rate using 1000 packets.

4.1.5 Conclusion

Network based attackers often launch attacks through stepping stones to evade detection,

who also make detection even more difficult by encrypting attack traffic and introducing delay

and chaff perturbations. Several approaches have been proposed to detect stepping stone

attacks. However, none of them performs effectively when delay and chaff perturbations exist

simultaneously.

In this research, we discuss two different stepping stones scenarios and proposed three

schemes to attribute stepping stone attacks. Two of the three schemes can effectively detect

stepping stones even when delay and chaff perturbations exist simultaneously. We analyze

our schemes and provide the bounds on the number of packets needed to confidently detect

stepping stone connections from non-stepping stone connections with any given probability of

www.manaraa.com

104

false attribution. We compare our schemes with previous ones and experiments show that our

schemes are more effective in detecting stepping stones in the two scenarios.

Our mathematical analysis and experimental results show that although the attackers can

make detection more complicated by introducing delay and chaff perturbations, if the attack

connections are long enough, they cannot evade detection only by introducing limited and

independent delay and chaff perturbations. Attackers may be forced to introduce dependent

delay and chaff perturbations, and reduce the number of attack packets. As a next step, we

are continuing the research on attributing stepping stone attacks with message merge and split

[112].

4.2 Topology-aware Single Packet Attack Traceback

4.2.1 Introduction

With the phenomenal growth of the Internet, more and more people enjoy and depend

on the convenience of its provided services. Unfortunately, the number of network-based at-

tacks is also increasing very quickly. The consequences are serious and, increasingly, financial

disastrous, but ironically, only few of the attackers have been captured and thereby punished

because of the stateless nature of the Internet. Network-based attackers can easily hide their

identities through IP spoofing, stepping stones, network address translators (NATs), Mobile IP

or other ways, and thereby reduce the chance of being captured. The current IP network infras-

tructure lacks measures which can effectively deter and identify motivated and well-equipped

attackers. As a result, due to the lack of effective attack attribution techniques and concerns

for negative publicity, the percentage of organizations reporting computer intrusions to law

enforcement has continued its multi-year decline [52]. Therefore, it is desirable to design ef-

fective and efficient IP traceback systems to attribute attackers and help to reconstruct cyber

crime scenes.

Building systems that can reliably trace attack packets back to their real origins in the

current IP networks is a first and important step in making cyber criminals accountable. There

are many forms of network-based attacks. While the most-widely reported DDoS attacks

www.manaraa.com

105

are conducted by flooding networks with large amounts of traffic, there are network-based

attacks that require significantly smaller packet flows. Some attacks (e.g., Teardrop) can even

succeed by using only one well-targeted packet. In building such traceback systems, there are

a number of significant challenges including which packets to trace, how to trace long-lifetime5

and short-lifetime6 attacks, and how to minimize router processing overhead and storage space

requirements, while satisfying applications’ and network users’ privacy requirements.

Several IP traceback schemes have been designed to attribute the origin of IP packets

through the Internet. We roughly categorize them into four primary classes: (i) Active Prob-

ing [25, 99], (ii) ICMP Traceback [21, 71, 110], (iii) Packet Marking (including deterministic,

probabilistic, and algebraic packet marking) [20, 36, 85, 93, 96], and d) Log-based Traceback

[66, 74, 94, 95]. The IP traceback systems built atop of approaches of Active Probing, ICMP

traceback and Packet Marking usually require a sufficiently large set of attack packets to

make traceback possible, which are not effective to traceback short-lifetime or single packet

attacks. Log-based traceback schemes seem suitable to attribute individual packet to its origin.

However, several log-based methods such as [74] require recording the entire network traffic for

future attack traceback. Obviously, such methods have overly high storage space requirements,

which make them impractical to be used for current high-speed IP networks, especially those

with heavy traffic.

Thereafter, to address the problem of log-based IP traceback systems’ overly large stor-

age space requirement, two IP traceback systems [94, 95] were designed using Bloom filters

[22], a space-efficient data structure for representing a set of elements to respond member-

ship queries. However, although Bloom filters are space-efficient data structures in responding

membership queries, they have inherent unavoidable collisions which produce false positives,

and thus restrain the effectiveness of these systems.

In this research, we propose a Bloom filter-based topology-aware single packet IP traceback

system, namely TOPO, which utilizes router’s local topology information, i.e., its immediate
5By long-lifetime, we mean that there are a sufficiently large number of attack packets available for traceback

systems.
6By short-lifetime, we mean that there are a significantly smaller number of attack packets available for

traceback systems. Some attacks might only use a single packet.

www.manaraa.com

106

predecessor information, to traceback [114]. Our theoretical analysis and experimental evalu-

ation show that TOPO can significantly reduce the number and scope of unnecessary queries

and thus, significantly decrease the false attributions to innocent nodes.

Furthermore, we consider the practicability of Bloom filter-based IP traceback systems. In

some real world networks, it is difficult or even impossible to install an IP traceback system

on all the routers on the network. Therefore, partial deployment is an important and desired

property when designing and implementing IP traceback systems. We analyze and show that

TOPO is suitable to be partially deployed while maintaining its traceback capability.

Finally, we discuss an issue on utilizing Bloom filters which has never been studied. When

Bloom filters are applied in IP traceback systems, it is difficult to decide their optimal control

parameters a priori and thus achieve the lowest false positive rate. Based on our analytical

results, we design a k-adaptive mechanism to dynamically adjust parameters of Bloom filters

such that our IP traceback system can achieve the best performance in terms of false attribution

rates and storage space requirement.

4.2.2 Problems and Goals

4.2.2.1 Problems in Existing Traceback Schemes

To prevent the Internet from being attacked, it is desirable to design effective and efficient

IP traceback systems to attribute the attackers and help reconstruct cyber crime scenes. IP

traceback problem is to traceback the network path(s) the attack traverses and identify the real

attackers.

Active Probing, ICMP traceback and packet marking schemes are designed to traceback

those long-lifetime attacks, and they are not suitable to traceback single packet attacks or

short-lifetime attacks. SPIE is designed to trace the origin of a single IP packet delivered by

the network in the recent past. In SPIE, when an intrusion detection system (IDS) detects an

attack, it sends out a query message to SPIE. SPIE then dispatches the query message to the

relevant routers for processing. After a router receives a query about whether it has forwarded

a packet with a specific arrival time, it checks its Bloom filter for that time interval. If the result

www.manaraa.com

107

is ‘present’ in the Bloom filter, the router must continue to query all its upstream neighbors.

Consequently, there would be a lot of unnecessary queries sent to innocent routers. The

unnecessary queries force the routers to spend CPU time and other resources to respond, and

thus reduce the performance of their tasks as routers. Furthermore, these unnecessary queries

can introduce innocent nodes into the attack graph because of the unavoidable false positives

of Bloom filters, which in turn cause false attributions. Consequently, it is desirable to design

new mechanisms to control the unnecessary queries and thus reduce the false attributions to

innocent nodes.

For any proposed IP traceback systems, besides traceback effectiveness, practicability is

also an important and desired property in evaluating their system performance. In some real

world networks, it is difficult or even impossible to install Bloom filter-based IP traceback

systems, such as SPIE [95], PAS [94] and TOPO proposed in this research, on all routers.

Although some routers in these networks may easily install and activate a Bloom filter-based

IP traceback system, there are some routers such as core routers that are hardly to be updated

because of the high overhead involved or other administrative issues.

If a Bloom filter-based IP traceback system can be partially deployed without losing (or

compromising a little) traceback capability compared with the fully deployed system, then it

will have the following potential advantages:

• Low cost: Such a system may avoid wasting money and labor on updating routers which

are difficult and expensive to update. In addition, it is possible to reduce memory space

required by the whole traceback system [69].

• Flexibility: Such a system may be implemented on networks which have routers that are

impossible to be updated. Furthermore, it also provides flexibility to the administrator

who launches traceback or investigation of a particular attack. She may enable only a

portion of network routers and thereby avoid alerting the attacker.

Therefore, an IP traceback system which can be practically deployed should have the property

of partial deployment.

www.manaraa.com

108

Bloom Filters have been used in many network applications. In some applications, the

element number n that should be inserted is known a priori before the construction of Bloom

filters. For instance, Bloom filters are used to store a dictionary of unsuitable passwords for

security purposes, where the number of passwords is countable [97]. With the fixed element

number n, given any required false positive rate f and the memory size m, the optimal hash

function number k can be calculated by equation (2.2). However, in IP traceback systems,

the traffic volume that needs to be recorded varies significantly, especially when the network

is under attacks. This indicates that the packet number n is unknown a priori, when m and

k have to be decided in advance before traceback system is deployed. For different values of

n, there are different optimal values of k. Therefore, a Bloom filter-based IP traceback system

faces the problem of how to adaptively adjust parameter k to achieve a better false positive

rate.

4.2.2.2 System Model

We consider IP networks (the Internet) where TCP/IP architecture and protocols are being

used. An IP network consists of a number of host computers and network devices (e.g., routers

or switches), which are connected by physical links on which packets are forwarded. We make

the following assumptions in IP networks:

• Most routers are reliable.

• Some routers’ software and hardware can be updated.

4.2.2.3 Threat Model

With the phenomenal growth of Internet, more and more people enjoy and depend on

the convenience of its provided service. Meanwhile, the number of network-based attacks is

increasing very quickly. The reality is that only few of the attackers have been captured

and punished due to the stateless nature of the Internet and the readily available tools and

techniques on the Internet that are easily taken to conceal themselves from being discovered.

www.manaraa.com

109

It is well-documented that many attackers use spoofed IP source addresses in their attack

packets. As these packets traverse the Internet, little useful information is left for the victims

to identify their true origins. Some attackers also launch their attacks behind a chain of

compromised machines which are called “stepping stones”. Some attacks, such as SYN flood

Denial-of-Service (DoS) attack, need to flood network links with large amounts of packets,

while there are other attacks which require significantly smaller packet flows. Furthermore,

some sophisticated attackers can start and finish their attacks using a single well-targeted

packet, such as LAND attack [3], Ping of Death attack [4] and Teardrop attack [5].

4.2.2.4 Problem Definition and Our Goals

In this research, we aim at designing a Bloom filter-based topology-aware single packet IP

traceback system, namely TOPO, to solve the problems discussed above. We set the following

as our goals in the design of TOPO:

1. To design a single packet IP traceback system which has fewer unnecessary query mes-

sages and fewer false attributions to innocent nodes.

2. To design a single packet IP traceback system which needs not to be fully deployed in

the entire network.

3. To design a mechanism which helps achieve the best performance of Bloom filters by

adaptively adjust parameter k.

4.2.3 System Description

In this subsection, we first introduce topology-aware IP traceback mechanism which is the

baseline idea of TOPO, and then discuss the partial deployment issue and the design of the

k-adaptive mechanism for dynamically adjusting parameters of Bloom filters to achieve better

performance.

4.2.3.1 Topology-aware IP Traceback

We first define three terminologies used in this research:

www.manaraa.com

110

• Packet Signature is defined as the information to identify individual packet from each

other.

• Packet Predecessor is defined as the immediate upstream neighbor which sends the

packet to the current router.

• Predecessor Identifier is defined as the information to identify the predecessor of a

packet from other upstream neighbors.

As we discussed above, we need to find a way to control the production of unnecessary

queries. This can be achieved if the routers have the ability to identify which upstream routers

should be queried and which else should not be queried. Therefore, if we can check not only

the presence of each packet but also the packet predecessor information, we can only query the

exact predecessor and thus significantly reduce the unnecessary queries. This requires that we

record not only the packet signature but the predecessor information.

An intuitive way to record packet predecessor information is to separate the incoming

packets into several Bloom filters, each of which only store the packets coming from a distinct

predecessor. Snoeren et al. [95] discussed that a router may maintain separate Bloom filters

for each of its input port, because different upstream neighbors typically use different input

ports. Although this complicates the query process, the input port isolation may reduce the

number of upstream neighbors that need to be queried. However, the number of predecessors

(or active ports) within a certain time interval is an unknown parameter: Most routers cannot

decide how many upstream neighbors will send packets to it within a time interval in a real

world network. Even though we may estimate the maximum probable number of predecessors,

another problem appears that how to divide the limited memory on the router for the Bloom

filters of individual predecessors. We do not know how many packets will be received from a

certain predecessor. As we learn from equation (2.1), the false positive rate of Bloom filters

depends on m/n. If we divide the memory equally, then the Bloom filter which a large amount

of packets are inserted into will have high false positive rate. Therefore, it is not an effective

and practical solution to divide the limited memory into several separate Bloom filters.

www.manaraa.com

111

Another way of recording predecessor information is to create a list for each bit which is

set to 1 in the Bloom filter. This list is used to record all the predecessors which have set this

bit. With these lists, the presence of a packet is that all the k corresponding bits are set to 1,

and there is at least one common predecessor which appears on all the k corresponding lists.

However, the extra lists will consume a lot of memory, and thus degrade the Bloom filter’s

performance or increase the system memory requirement.

We propose that the router still only maintains one Bloom filter at a time. The Bloom

filter not only keeps the packet signature, but also the predecessor identifier. The predecessor

identifier can be hashed into the Bloom filter with the packet signature together. Such an

operation really can record the topology information without increasing false positive rate or

requiring larger memory space.

Now we introduce TOPO which is based on the above idea. TOPO is constructed on

some special routers which are equipped with Bloom filters, and we call them TOPO-equipped

routers. When a packet travels through the network where TOPO is deployed, no matter

whether it is an attack packet or not, the TOPO-equipped routers on its path record the

packet signature and predecessor information. If an attack packet is identified by the victim,

the victim’s address, packet signature, and packet arrival time, are reported to TOPO as a

traceback request. TOPO then begins traceback by sending a query message to the TOPO-

equipped router responsible for the region containing the victim. This router then checks its

record and continues to query other TOPO-equipped routers if necessary. Finally, all responses

from queried TOPO-equipped routers are gathered by TOPO to generate the attack graph.

The attack graph is used for further analysis and corresponding actions.

We show the details of TOPO-equipped router’s behaviors when it records a packet and

responds a query in Figure 4.7 and 4.8 respectively.7

Record a Packet

• When a TOPO-equipped router receives a packet, it first extracts the packet signature
7We do not discuss the topic of malicious behaviors of compromised routers, which is beyond the scope of

this research. We also do not discuss the packet transformation issue, which is well discussed in [95].

www.manaraa.com

112

Packet
Signature

Predecessor
Identifier

hash
·

·

1

0

0

1

1

·

Bloom Filter

Predecessor 1

Predecessor 2

···

Predecessor List

H1

Hk

H2

new? Predecessor i
Y

insert

·

·

···

···

···

0

1

·

0

·

Pred. 1

·

Pred. 2

Pred. n

·

0

1

·

1

·

Pred. 1

·

Pred. 2

Pred. n

·

1

0

·

1

·

Pred. 1

·

Pred. 2

Pred. n

·

···

···

Archive 1 for),[10 TT

Archive 2 for),[21 TT

Archive j for),[1+jj TT

Packet

Figure 4.7 Router’s Behaviors when Receiving a Packet

Packet
Signature

Predecessor
Identifier

hash
·

·

1

0

0

1

1

·

Bloom Filter

Predecessor 1

Predecessor 2

···

Predecessor List

H1

Hk

H2

Predecessor i

insert

·

·

···

···

···

0

1

·

0

·

Pred. 1

·

Pred. 2

Pred. n

·

Archive j for),[1+jj TT

Query Message

···

all 1? Y Query Router i

Figure 4.8 Router’s Behaviors when Receiving a Query Message

www.manaraa.com

113

and predecessor identifier.

• The predecessor identifier is inserted into an extra predecessor list if the predecessor has

not been inserted before.

• The router calculates the k hash values of the combination of packet signature and

predecessor identifier, and inserts them into its Bloom filter by setting the corresponding

bits to 1.

• At the end of the anticipated time interval, the current Bloom filter and the predecessor

list are archived by flushing the oldest ones, and a new Bloom filter and predecessor list

start.

Respond a Query

• When a TOPO-equipped router receives a query message, it first retrieves the Bloom

filter and the predecessor list for the relevant time interval using the given attack packet

arrival time in the query message.

• Each predecessor identifier on the list is combined with the packet signature provided by

the query message, and the combination is hashed using the same k hash functions to

check if it is present in the Bloom filter.

• The router will respond the query that it forwarded this packet before if there is at least

one presence found. If so, it only continues to query the predecessor(s) which is (are)

present in the Bloom filter.

For a router which is not TOPO-equipped, when receiving a packet, it just simply forwards

it to the next hop in the path; when receiving a query message, it simply forwards it to all of

its upstream neighbors.

4.2.3.2 Partial Deployment

Ideally we can equip TOPO on all routers on the network, and thus can trace back single

packet effectively. However, many legacy routers cannot be updated, or there is no enough

www.manaraa.com

114

money to update all routers. Therefore, with resource and policy restriction, in most cases we

have to partially deploy an IP trace back system. One simple partial deployment mechanism

is that Bloom filter-based IP traceback system is only installed on edge routers and all internal

routers remain unchanged. Under such architecture, all edge routers will be queried for any

traceback request. Therefore all innocent end nodes have the possibility to be considered

attackers, and thus introduce more false positives. Furthermore, there are two other drawbacks

using such a partial deployment mechanism. First, the victim cannot get a full attack graph;

second, the query burden on each edge router might be very heavy. Therefore, it is necessary

to deploy Bloom filters at least on part of internal routers if the full attack graph is desired or

traceback requests are frequently delivered.

To partially deploy TOPO, we need to find a way to select particular routers to equip

TOPO to achieve the highest traceback performance with the lowest cost. We call it TOPO-

equipped routers placement problem. Actually, this problem should be solved as an optimization

problem. For instance, given the network map, the network traffic information, the distribution

of attacks, and the costs of updating routers to TOPO-equipped, we optimize the traceback

system with respect to the total cost and traceback performance (i.e., a combination of cost,

false positives and false negatives). When the number of candidate routers is huge, it is time-

consuming to find the optimized result. Furthermore, it is hard to get the distribution of

attacks before deployment of TOPO.

In this research, we propose an intuitive but effective method to place the TOPO-equipped

routers. The basic idea is that if the distribution of attacks is not available, intuitively an

evenly distributed IP traceback system should have better performance. We assume that we

know all the possible paths of the network, which can be achieved through some known network

mapping tools [31, 53, 58]. To evenly distribute N TOPO-equipped routers on the network,

we first sort all paths in descending order. We then equip TOPO on the median router of the

longest path. Each path through this router is divided into two shorter paths. We sort all

paths again and choose the median router of the longest path. We repeat these steps until we

equip TOPO on N routers. We provide the performance analysis of partially deployed TOPO

www.manaraa.com

115

in the next subsection.

4.2.3.3 k-Adaptive Mechanism for Bloom Filters

When a new Bloom filter starts to record the arriving packets, the exact number of packets

that would be inserted into this Bloom filter is unknown. As shown in formula (2.1), the false

positive rate is decided by n and k when m is fixed. Although we can estimate a possible value

of n using historical knowledge about network statistics and choose a corresponding k, in some

scenarios n may dynamically change in a large range, especially when the network is under

attacks. In such cases, the false positive rate will be (greatly) higher than the optimal rate, as

shown in Figure 4 of [43]. However, we cannot reconstruct a Bloom filter with the optimal k

after we finally know the packet number n, because when we notice that we should use a better

k, the previous packets have passed because of the limited memory on routers. Therefore, we

have no chance of selecting a better k and hashing all the previous packets again.

Someone may argue that when a Bloom filter is saturated, it can be archived and a new

filter starts. However, when the memory is limited, there may not be extra memory space for

those unexpected packets. For instance, a router in the IP traceback system is designed to

trace the traffic within 1 hour with the granularity of 1 minute, and divides its memory into 61

slices (1 slice is used to store the packets in the current minute, and the other 60 slices are for

these 60 archived Bloom filters in the recent past.). If the router finds that the current Bloom

filter saturates after 30 seconds, it cannot archive the current Bloom filter by flushing the

oldest archived filter, because such an operation makes the router fail to respond the queries

of the previous packets between 59 minute 30 second and 60 minute ago, and thus violates

the traceback system goals and requirements. Otherwise, after an attacker finishes a serious

attack, it can easily flood the network and flush its previous attack traffic before the system

is aware of its attack and starts the traceback. Therefore, we need a mechanism to adjust

the hash function number k with respect to the dynamic n to achieve the best performance of

Bloom filters.

A direct solution is to construct several Bloom filters simultaneously which have different

www.manaraa.com

116

numbers of hash functions. After all elements are inserted, we archive the Bloom filter with

the optimal k and throw away all others. Obviously, this solution requires much more memory

for the extra Bloom filters, and thus perhaps decreases the entire performance eventually.

We propose an effective k-adaptive mechanism as shown in Figure 4.9 which uses a table

v with m Q-bit entries to record the results of K m-bit Bloom filters with different numbers

of hash functions, if every smaller hash function set is the subset of larger ones, where

Q = dlog2(K + 1)e. (4.22)

Let H1, H2, · · · , HK be the K hash function sets which have k1, k2, · · · , kK hash functions

respectively, and k1 < k2 < · · · < kK .

H1 = {h1, . . . , hk1},

H2 = {h1, . . . , hk2},

. . .

HK = {h1, . . . , hkK}.

Therefore H1 ⊂ H2 ⊂ · · · ⊂ HK . For each hash function hi among the total kK hash functions,

let si denote the number of hash sets it belongs to in H1, H2, · · · , HK . For instance, if hi /∈ Hj

and hi ∈ Hj+1, then si = K − j. si is a number between 1 and K.

At the beginning, the whole table v is initialized to 0. When a packet arrives, the packet

signature pkt and predecessor identifier pid are extracted and hashed using each hash function

hi. si is written into entry hi(pkt, pid), if si is larger than the entry’s current value. After cur-

rent time t passes the required end time tend, the optimal kj is calculated among k1, k2, · · · , kK

which minimizes false positive rate f based on the actually inserted element number n using

formula (2.1). The next job is to restore and archive the Bloom filter b with the optimal kj

hash functions. Each entry’s value v(i) is compared with K − j. If v(i) is larger than K − j,

the corresponding bit b(i) in Bloom filter is set to 1.

We use the following example to demonstrate the k-adaptive mechanism in detail. Let

www.manaraa.com

117

(1) Initialize the table v and Bloom filter b to 0

(2) n← 0

(3) while (t < tend AND receive a new packet pkt with pid)

(4) n← n+ 1;

(5) for (i← 1 to kK)

(6) j ← hi(pkt, pid)

(7) v(j)← max(v(j), si)

(8) Find the index j of kj which minimizes f in k1, k2, · · · , kK

(9) for (i← 1 to m)

(10) if (v(i) > K − j)

(11) b(i)← 1

Figure 4.9 k-adaptive Procedure

m = 106, Q = 2 and K = 3. Suppose we want to choose the best k among k1 = 1, k2 = 3 and

k3 = 4, and the hash function sets are H1 = {h1}, H2 = {h1, h2, h3}, H3 = {h1, h2, h3, h4}.

Instead of recording 3 m-bit Bloom filters b1, b2 and b3 in the memory which use the hash set

H1, H2, and H3 respectively, we only keep a table v with m 2-bit entries. Now we show that

we can restore b1, b2 and b3 using v. We observed that if finally an entry b1(i) is set to 1, then

the entries b2(i) and b3(i) must also be 1, because H1 ⊂ H2 ⊂ H3. Therefore, there are only 4

possible value combinations of the 3 entries b1(i), b2(i) and b3(i). As shown in Table 4.3, we

can find a bijection between b1(i), b2(i), b3(i) and the number of 1s in them, and thus we can

use only 2 bits to represent the 3 entries. In this case, s1 = 3, s2 = s3 = 2, and s4 = 1, and

they represent the number of 1s that the corresponding hash function will set in the 3 Bloom

filters. If finally we receive n = 2.5 ∗ 105 packets, we get the following false positive rates using

formula (2.1): fb1 = 0.221, fb2 = 0.147, fb3 = 0.160. Therefore, we choose k = k2 = 3 and

restore Bloom filter b2. We compare each entry v(i) with K − 2 = 1 and set b(i) to 1 if v(i) is

larger.8

8When K = 3, we can effectively use logical operations instead of comparison operations to restore any
desired Bloom filter from the table. b1 can be restored by AND of the two bits in each entry of v; b2 is just the
most significant bit of v; b3 can be restored by OR of the two bits in each entry of v.

www.manaraa.com

118

Table 4.3 Bijection Between K = 3 Bloom Filters and 2-bit Table

b1(i) b2(i) b3(i) v(i) (# of 1s)

0 0 0 0

0 0 1 1

0 1 1 2

1 1 1 3

We must point out that this k-adaptive mechanism can be used not only in Bloom filter-

based IP traceback, but in other Bloom filter applications that the element number is not

known a priori.

4.2.4 Theoretical Analysis and Experimental Evaluation

In this subsection, we first analyze and evaluate the traceback performance of fully deployed

TOPO, and then analyze TOPO when it is partially deployed. We focus on the performance

comparison between TOPO and SPIE. We finally analyze the performance of our k-adaptive

mechanism for Bloom filters.

4.2.4.1 Analysis under Full Deployment of TOPO

Theoretical Analysis In the Bloom filter-based IP traceback systems, the traceback

request is initiated by the victim (or IDS) when it detects intrusions. Finally the victim will

get an attack graph from the IP traceback system which not only contains the real attack path,

but also some extra innocent nodes because of the false positives of Bloom filters.

In SPIE’s analysis [95], an upper bound of the expected number of extra nodes ex all in

the attack graph G is given by:9

ESPIE(ex all) =
Ldf

1− df
, (4.23)

where d is the maximum number of each router’s predecessors on the network, and L is the

number of routers on the attack path. This formula requires that 0 ≤ df < 1, otherwise it

will not converge. However, this formula does not answer all the questions we exactly desire
9We get a slight different bound in Theorem 13.

www.manaraa.com

119

to know: How many unnecessary queries are sent out into the network? How many innocent

end nodes are there in the attack graph? A good IP traceback system must have no or less

unnecessary queries and innocent end nodes.

Let ex query denote the total number of extra (unnecessary) queries that are sent out into

the network, and ex end denote the number of extra end nodes in the attack graph. We can

easily get the following theorem for SPIE:

Theorem 13.

ESPIE(ex query) =
L(d− 1)
1− df

. (4.24)

ESPIE(ex all) = f
L(d− 1)
1− df

(4.25)

= f · ESPIE(ex query). (4.26)

ESPIE(ex end) = (1− f)df
L(d− 1)
1− df

(4.27)

= (1− f)d · ESPIE(ex all). (4.28)

Proof. Figure 4.10 demonstrates the tree structure of predecessors (d = 3 in this case) viewing

along the reverse attack path: V ictim→ R1 → . . .→ RL → Attacker. In real world it should

be a merged net instead of a tree, because many routers share the same predecessors. Figure

4.10 shows the worst possible scenario, since we want to calculate the upper bound of the

expectations. Each level consists of the innocent nodes which have the same probability to be

queried. As shown in Figure 4.10, the number of nodes on level q is

L(d− 1)dq−1. (4.29)

According to SPIE, the probability that an innocent node on level q is queried, the probability

that it is falsely included in the attack graph, and the probability that it is end node in the

attack graph are

f q−1, (4.30)

f q, (4.31)

www.manaraa.com

120

and

(1− f)df q (4.32)

respectively. Therefore, we get equation (4.24), (4.25) and (4.27).

R1

...

...

...

...

Victim AttackerR2 RL-1 RL

Level 1: L(d-1)

...

Level 2: L(d-1)d

Level 3: L(d-1)d2

Level q: L(d-1)dq-1

...

Figure 4.10 Tree Structure of Predecessors

Now we analyze the traceback performance of TOPO. Let F = 1 − (1 − f)d. If df << 1,

F ≈ df . If we ignore the memory consumed by the predecessor list, we can get the following

theorem.10

Theorem 14.

ETOPO(ex query) = f · ESPIE(ex query). (4.33)

ETOPO(ex all) = F · ESPIE(ex all). (4.34)

ETOPO(ex end) = (1− fF)dETOPO(ex all) (4.35)

≈ F · ESPIE(ex end). (4.36)

Proof. In TOPO, the probability that an innocent node on level q is queried, the probability

that it is falsely included in the attack graph, and the probability that it is end node in the

attack graph are

f q, (4.37)
10Please refer to the discussion in Section 4.2.5.3 to understand why the predecessor list memory size may be

ignored.

www.manaraa.com

121

Ff q, (4.38)

and

(1− fF)dFf q (4.39)

respectively. Therefore, we get equation (4.33), (4.34) and (4.35), and

ETOPO(ex end) =
F (1− fF)dESPIE(ex end)

(1− f)d
(4.40)

≈ F · ESPIE(ex end).

As indicated in Theorem 14, the number of unnecessary queries in TOPO is only f times

to that in SPIE, which is a significant improvement. Also, the numbers of extra nodes and

extra end nodes reduce to F times to those in SPIE. If f = 0.0001, and d = 100, F ≈ 0.01,

which means that, compared with SPIE with the same resource, only 1% nodes will appear in

the attack graph using TOPO.

Experimental Study In our theoretical analysis, we have assumed that all routers have

equal degree of predecessors. However, it is not realistic in real world networks, where the

degrees of routers are different. In this experimental study, we use real world Internet topologies

provided by CAIDA [7] to evaluate and compare the performance of SPIE and TOPO in

traceback.

In our experiments, we use real world Internet topology captured on Nov. 5, 2005 from

one of CAIDA’s skitter monitor b-root.skitter.caida.org, which is a topology map viewed from

a single origin (128.9.0.109) to 317, 218 destinations11. Each router is assumed to be equipped

with Bloom filters that have the same false positive rate. We simulate the traceback from the

single origin to every destination and calculate the expected number of extra queries, extra

nodes and extra end nodes with respect to the false positive rate of Bloom filters. Figure 4.11

shows our experimental results.
11We only consider the destinations with completed paths in this data set.

www.manaraa.com

122

0.01

0.1

1

10

100

1000

10000

10^-4.0 10^-3.5 10^-3.0 10^-2.5 10^-2.0 10^-1.5 10^-1.0 10^-0.5

False Positive Rate of Bloom Filters

Ex
pe

ct
ed

 N
um

be
r o

f E
xt

ra
 Q

ue
rie

s

SPIE
TOPO

(a) Extra Queries

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10^-4.0 10^-3.5 10^-3.0 10^-2.5 10^-2.0 10^-1.5 10^-1.0 10^-0.5

False Positive Rate of Bloom Filters

Ex
pe

ct
ed

 N
um

be
r o

f E
xt

ra
 N

od
es

SPIE
TOPO

(b) Extra Nodes

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10^-4.0 10^-3.5 10^-3.0 10^-2.5 10^-2.0 10^-1.5 10^-1.0 10^-0.5

False Positive Rate of Bloom Filters

Ex
pe

ct
ed

 N
um

be
r o

f E
xt

ra
 E

nd
 N

od
es

SPIE
TOPO

(c) Extra End Nodes

Figure 4.11 Experimental Results

As shown in Figure 4.11(a), as the false positive rate f of Bloom filters decreases, both

SPIE and TOPO generate less extra queries. However, when f is less than 10−2, the expected

number of extra queries in SPIE almost remains the same (about 156), which indicates that

there exists a lower bound in SPIE on expected number of extra queries. This can be explained

using equation (4.24). Meanwhile, the expected number of extra queries in TOPO always

decreases as f decreases. When f = 0.01, the expected number of extra queries is less than

2, while SPIE’s expected number of extra queries is more than 165 for the same f . Figure

4.11(b) shows the expected number of extra nodes in the attack graph. As f decreases, both

SPIE and TOPO create less extra nodes. However, TOPO has much smaller expected number

of extra nodes than SPIE. Figure 4.11(c) shows that TOPO also has smaller expected number

of extra end nodes compared to SPIE.

In sum, both the theoretical analysis and the experimental results show that TOPO has

better traceback performance compared to SPIE. In other words, TOPO can achieve the same

performance as SPIE with lower memory requirement on Bloom filters. For instance, TOPO

with f = 0.005 can achieve better traceback performance than SPIE with f = 0.0001. This

means that TOPO requires less memory allocated for Bloom filters on routers. Therefore,

TOPO is more efficient with the same traceback capability.

www.manaraa.com

123

4.2.4.2 Analysis under Partial Deployment of TOPO

It is difficult to analyze the performance of partially deployed Bloom filter-based IP trace-

back systems because of the varieties of deployment. To simplify the analysis, we consider

partially deployed systems with the following constraint: On all possible paths in the partially

deployed system, there is at least one Bloom filter-equipped router within any S steps.

Let ESPIEpd(x) and ETOPOpd(x) denote the upper bound of the expected number of pa-

rameter x in partially deployed SPIE and TOPO respectively. When S ≥ 2 and dSf < 1, we

have the following theorem:12

Theorem 15.

ESPIEpd(ex query) =
L(dS − 1)
1− dSf

. (4.41)

ESPIEpd(ex all) =
L[dS−1 − 1 + (d− 1)dS−1f]

1− dSf
. (4.42)

ESPIEpd(ex end) =
L(d− 1)dS−2(1− f)d

1− dSf
. (4.43)

ETOPOpd(ex query) = ESPIEpd(ex all). (4.44)

ETOPOpd(ex end) =

L
1−dSf · [d

S−2 − 1 + (d− 1)dS−2(df + F)] (4.45)

ETOPOpd(ex end) =
L(d− 1)dS−3(1− F)d

1− dSf
, if S > 2 (4.46a)

L(d− 1)df(1− F)d

1− d2f
, if S = 2. (4.46b)

We skip the proof because it is similar to the proof of Theorem 13 and 14. Theorem

15 indicates that the performance of a partially deployed SPIE or TOPO may exponentially
12In the analysis of partially deployed systems, we assume that there are no or little packet transformations

which can be omitted on the common routers without Bloom filters.

www.manaraa.com

124

decline as S increases. If a Bloom filter-based IP traceback system is partially deployed in a

network, the Bloom filter-equipped routers should be evenly distributed among all routers.

Comparing Theorem 15 with Theorem 13 and 14, we learn that both partially deployed

SPIE and TOPO would have lower performance than that of the fully deployed systems.

However, partial deployment also saves the total amount of memory. If the saved memory is

used to enlarge the existing Bloom filters, the false positive rate would reduce and thus help

alleviate the performance losing in the partially deployed systems. Based on Theorem 15, if

dSf << 1, we get

Theorem 16.

ETOPOpd(ex query) ≈ 1
d
ESPIEpd(ex query), (4.47)

ETOPOpd(ex all) ≈ 1
d
ESPIEpd(ex all), (4.48)

ETOPOpd(ex end) ≈
1
d
ESPIEpd(ex end), if S > 2 (4.49a)

dfESPIEpd(ex end), if S = 2. (4.49b)

Therefore, TOPO has better performance than SPIE when both of them are partially

deployed in the same way. TOPO is more suitable when the IP traceback system must be

partially deployed on certain networks compared with SPIE.

4.2.4.3 Analysis of k-Adaptive Mechanism

We design an experiment to analyze the performance of k-adaptive mechanism for Bloom

filters. Suppose a router is designed to store traceback information within 1 hour with the

granularity of 1 minute. First, it divides its memory into 61 equal slices and each slice is 1M

bits. 1 slice is used to store the packets in the current minute, and the other 60 slices are for

these 60 archived Bloom filters. The hash function number is fixed to k = 4. Now we divide

the same memory into 63 slices and each slice is 0.968M bits. 3 slices are used as a table to

store the values of 7 Bloom filters with different numbers of hash functions: k1 = 1, k2 = 4,

www.manaraa.com

125

k3 = 7, k4 = 10, k5 = 13, k6 = 16, and k7 = 19.

Figure 4.12 shows that when packet number n varies in a large range, although the real

size of single Bloom filters in our k-adaptive mechanism is smaller than the original size, our

mechanism generally can achieve better performance than the original Bloom filter with fixed

number of hash functions. Our performance is very close to the performance when k always

equals the optimal value.

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
0 10 20 30 40

Bit per Element (m/n)

Fa
ls

e
Po

si
tiv

e
R

at
e

k=4
adaptive k
Optimal k

Figure 4.12 False Positive Rate Comparison

4.2.5 Further Discussions

In this section, we will discuss several considerations when designing and implementing

TOPO.

4.2.5.1 Packet Signature Choice

Packet Signature can be flexible. There are different choices which can meet the requirement

of distinguishing different packets. For instance, a subset of the IP header fields and the first

several bytes of the packet payload are used in [74] and SPIE. PAS only uses a long excerpt

of payload, which is useful when the exact packet header is unavailable. However, the excerpt

must be long enough to identify different packets, and thus the attackers may avoid detect by

attacking through a lot of packets with short payload. In TOPO, it is preferred to use a packet

signature which contains IP header information.

www.manaraa.com

126

4.2.5.2 Predecessor Identifier Choice

When a router has only one predecessor at each of its input port, for example, inner routers

on the Internet, we choose the input port of each packet as its predecessor identifier. For a

router that has multiple predecessors at one input port, we can use Layer 2 (i.e., data-link layer)

information (such as source MAC addresses) to differentiate these multiple predecessors. For

instance, on the Ethernet, the multiple predecessors and the router are connected through

the broadcast-based transmission media. When the router receives a packet from one of its

predecessors, the source MAC address of the header of the Ethernet frame can be used as

the predecessor identifier. Similarly, ATM’s VPI/VCI information can also be used for this

purpose on ATM networks.

We propose to use local topology information in TOPO. The local topology information

means the router’s immediate predecessor and immediate successor. In the current system, we

only use predecessor information. We believe the successor information can also be utilized.

We will address this in the future research.

4.2.5.3 Predecessor List Memory Size

In most cases, the memory size of the predecessor list is much smaller than those of the

Bloom filters, and that is why we ignore its influence on Bloom filters when we analyze the

performance of TOPO in Section 4.2.4. Generally, inner routers do not have a large number

of predecessors (which are typically no more than 100), and these predecessors often remain

unchanged for a long time. Therefore, we need not archive the predecessor list often. Instead,

a router may maintain a static list to store all appeared predecessor identifiers for more than

one Bloom filters, and only archive 1 bit for each predecessor on the list when archiving the

Bloom filters: value 1 means that the router receives packets from that predecessor in that

certain time interval, and value 0 not.

To find the direct support to our point of view from the real world Internet, we analyze

CAIDA’s Internet Topology Data Kit #0304 (ITDK0304) [9]. ITDK0304 is the skitter data of

the Internet router-level graph collected between Apr 21 and May 8, 2003. There are a total of

www.manaraa.com

127

Table 4.4 Distribution of Internet Routers’ Upstream Degrees

Upstream Degree 0 - 24 25 - 49 50 - 74 75 - 99 100 - 124 125 - 274 ≥ 275 Average: 3.31

Number of Routers 190469 1501 191 52 20 11 0 Total: 192244

Percent of Routers 99.0767% 0.7808% 0.0994% 0.0270% 0.0104% 0.0057% 0

192244 nodes and 636643 directed links. Table 4.4 shows the distribution of Internet routers’

upstream degrees derived from ITDK0304. The average upstream degree is as low as 3.31, and

the maximum upstream degree is only 269. Moreover, more than 99% routers have less than

25 upstream neighbors, and more than 99.98% routers have less than 100 upstream neighbors.

These facts quite support our point of view that the memory sizes of predecessor lists need to

be archived are adequately small compared with the large sizes of Bloom filters.

4.2.5.4 Membership Check Burden on Routers

In TOPO, suppose that there are d predecessors on one router’s predecessor list. When the

router receives a query message, it has to do d membership checks by combining the packet

identifier with each predecessor identifier on the list, while the router in SPIE only need to do 1

membership check. It seems that TOPO complicates the membership check process, and thus

aggravates the computation burden on each router. However, after using topology information

in TOPO, the probability that each innocent router is queried becomes f times of that of

SPIE. Let member check denote the number of membership checks, and we get that

ETOPO(member check) = df · ESPIE(member check). (4.50)

In most cases, d · f << 1, therefore actually TOPO alleviates the membership check burden

on each router which receives fewer query messages and does fewer membership checks.

4.2.5.5 Applying Compressed Bloom Filters

Mitzenmacher [81] introduced compressed Bloom filters. He proposed that Bloom filters

can be compressed to improve their performance by achieving either a lower false positive rate

with the same memory size, or smaller memory size with the same false positive rate. The

www.manaraa.com

128

compressed Bloom filters can be used to reduce the number of bits broadcast in sharing Web

cache information. As shown in Table VI in [81], a compressed Bloom filter can achieve the

same false positive rate as the standard Bloom filter while reducing the memory over 20%. The

tradeoff costs are the increased processing requirement for compression and decompression and

larger memory requirements at the endpoint machines.

In Bloom filter-based IP traceback systems, if a router stores a lot of archived pages of

previous Bloom filters, and the received query messages are infrequent, the gain of applying

compressed Bloom filters can overcome the processing costs introduced by compression and

decompression. However, if a router only has a few archived Bloom filters, the memory over-

head of implementing compression will be unacceptable. Furthermore, if the query messages

are frequently received which always query different Bloom filters, the router would be busy in

decompressing the required Bloom filters. The reason is that the router usually has no enough

memory to keep two decompressed Bloom filters at the same time.13

4.2.5.6 Applying Hierarchical Bloom Filters

We also consider applying the Hierarchical Bloom filters [94] in TOPO. However, we find

that actually hierarchical architecture has no benefit to false positive rate compared with the

standard Bloom filters, and is even worse. The authors of [94] referred to the false positive

rate of the standard Bloom filter upon which their Hierarchical Bloom filters are built as basic

false positive rate fo, and referred to the false positive rate resulting from their Hierarchical

Bloom filters as effective false positive rate fe. They showed that fe << fo. We agree with

it. However, hierarchy also introduces more inserted elements into the Bloom filters, which

increases the false positive rate and achieve no benefits eventually. Suppose n packets are

inserted into a Hierarchical Bloom filter using q different strings for each, and the totally

inserted elements are n0 = qn. Then we get

fe = fo
q ≈ (0.6185

m
n0)q = 0.6185

m
n = f, (4.51)

13Usually, the size of decompressed Bloom filters is over 10 times larger than that of the original Bloom filters.

www.manaraa.com

129

where f is exactly the false positive rate when the standard Bloom filter inserts n packets

each using just one string. Therefore there is no benefit to false positive rate using hierarchy.

It makes false positive rate even worse considering that hierarchy needs to check all possible

alignments of payload excerpt.

4.2.6 Conclusion

Several Bloom filter-based IP traceback schemes have been proposed. However, Bloom

filters’ inherent false positives restrain the effectiveness of previous schemes. In this research,

we have proposed TOPO, a topology-aware single packet IP traceback system, in which the

predecessor information is used for traceback purpose. Our analysis showed that TOPO sig-

nificantly reduces not only the number of unnecessary queries but also the false attributions.

In addition, practicability is an important and desired property of IP traceback systems. We

have studied the partial deployment problem of Bloom filter-based IP traceback systems and

carefully designed to allow TOPO to be partially deployed while maintaining its traceback ca-

pability. We also proposed k-adaptive mechanism for Bloom filters which control parameters

may be adaptively adjusted according to the number of actual received packets. Such adjust-

ments can help Bloom filters-based IP traceback systems to achieve the best performance in

terms of false positive rate and storage space requirement when the number of arrival packets

varies significantly over time.

In the future, we will continue to improve the design of TOPO in terms of processing

overhead and memory space requirement.

www.manaraa.com

130

CHAPTER 5. RESEARCH IN ONLINE FRAUD DETECTION

5.1 Introduction

With the rapid growth of the Internet, online advertisement plays a more and more impor-

tant role in the advertising market. Among several online advertising models, pay-per-click

model is the most popular one. However, pay-per-click model is suffering serious fraud prob-

lems: attackers earn extra incomes or deplete competitors’ advertising budget by simply click-

ing (seldom by hands, often by automated scripts or bots) the pay-per-click advertisements

without actual interest in the content of the ad’s link. Such fraudulent clicks not only exhaust

online advertisers’ money, but also destroy the trust between online advertisers and adver-

tising publishers, and hence damage the healthiness of online advertising market. Recently,

there are several class action lawsuits against large online advertising publishers. Therefore,

the development of feasible and effective solutions to click fraud problems may benefit both

the advertisers and the publishers.

The source of click fraud may be from search engines, online ad publishers, ad sub-

distributors, competitors and web page crawlers, etc. Fraudulent clicks can be produced in

various forms, such as by hands, by malicious java scripts, or by botnets. Some types of click

fraud such as hit shaving problem [90] and hit inflation attacks [15], have received considerable

attention recently, and several algorithms were proposed to prevent these types of click fraud.

An important issue in defending click fraud is how to deal with duplicate clicks. If we simply

regard all identical clicks as fraudulent clicks, it is unfair to advertisers in some scenarios such

as that an interested client visits the same ad link several times in a week. On the other hand,

if the advertisers are charged for any identical clicks, then it is very easy for an attacker to

make money by continuously clicking the same ad link. A reasonable tradeoff is to define a

www.manaraa.com

131

timing threshold and only count identical clicks once within the timing window. Decaying

window models, such as landmark, jumping and sliding window models, are feasible to solve

this problem. However, most traditional duplicate detecting algorithms may not be directly

deployed to address this problem over decaying window models.

One possible solution is to use data streaming algorithms, which have received considerable

attention recently [18, 82]. Many characteristics of large data streams, such as sum, mean,

variance, frequency, quantile, top-k list (hot list), distribution, etc, have been widely studied.

However, the problem of duplicate detection over different decaying window models still lacks

efficient and effective solutions. In this research, we will describe two effective and efficient

algorithms to detect click fraud in pay-per-click streams over different kinds of decaying win-

dows, while using as little space and operation as possible and making only one pass over the

click streams.

5.1.1 Motivation

Although online advertising is an infant comparing with traditional advertising media,

it grows very quickly and plays a more and more important role in the advertising market.

Several studies show that more than ten billion dollars are spent in online advertising market

annually [40, 60]. There are several online advertising models, such as pay-per-action, pay-per-

call, pay-per-click, etc, and pay-per-click model is the most popular one among them. Online

advertisers bid on keywords of search engines or ad links of online publishers such that their

target links can have more chance to be visited by end users. The search engines and/or online

publishers then charge advertisers based on the number of clicks. The price of a click is usually

decided by the market, which varies from less than $0.01 to even above $30. However, click

fraud problem heavily challenges the pay-per-click advertising model: the ad link is clicked

without actual advertising impression. A survey indicates that Internet advertisers paid $0.8

billion for click fraud in 2005 and $1.3 billion estimated in 2006, and about 14.6% clicks are

fraudulent [83].

The possible source of click fraud may be:

www.manaraa.com

132

1. Search engines or online ad publishers themselves.

Since they charge advertising fees directly from advertisers, it is possible that some dis-

reputable search engines or ad publishers generate click fraud by themselves to increase their

revenue.

2. Ad sub-distributors.

The ad sub-distributors which are paid by contracted search engines or ad publishers can

also benefit through generating fraudulent clicks, and they are possibly the primary source of

click fraud.

3. Competitors.

The competitors may have intentions to generate click fraud to increase their rival adver-

tisers’ bill. Furthermore, since most advertisers have limited budgets on online advertising,

the competitors can just click the ad links to quickly exhaust their rival companies’ limited

advertisement budgets such that the ad links are removed from search engines or online ad

publishers sooner. For instance, if an advertiser can only afford 5000 clicks per month, then its

competitors can easily generate large number of fraudulent clicks in a week to make their ad

links unavailable to end clients. The competitors can even get a better position in the keyword

search results with a lower price by depleting the higher bidders. There has been a reported

case of such attacks [73].

4. Web page crawlers.

There are a lot of automated web page crawlers which periodically scan the Internet to

update their web page databases for search, archive or other purposes. They may generate

click fraud by entering the ad links inadvertently.

Fraudulent clicks can be produced by hands, by automated scripts, or by botnets, etc.

Several types of click fraud, such as hit shaving problem [90] and hit inflation attacks [15], etc,

have been studied, and several algorithms have been proposed to prevent such types of click

fraud. However, many of them can only be deployed by the advertising publishers. Not all

advertising publishers have enough motivations to deploy these algorithms, since they receive

money for each click, even if it is fraudulent. Therefore, there is a conflict in detecting click

www.manaraa.com

133

fraud: Online advertisers have enough motivations to prevent click fraud but little abilities;

Online advertising publishers have more power to play a decent role in defending click fraud but

without enough incentives. Such a conflict may lead to distrust between online advertisers and

publishers. Recently, several class action lawsuits against large online advertising publishers

appear. Google paid 90 million dollars to settle a class action lawsuit about click fraud in

March 2006 [10]. In June 2006, Yahoo settled a similar lawsuit by paying 4.95 million dollars

to plaintiffs’ counsel, and allowing credit refund to advertisers who claim click fraud back

through January 2004 [11].

A possible solution is that both the online advertisers and publishers keep on auditing the

click stream and reach an agreement on the determination of valid clicks. When determining

which are valid clicks in the click streams, an important issue is how to define duplicate clicks.

Should an advertiser be charged once or twice when there are two identical clicks? Let us

consider the following two scenarios.

Scenario 1: A normal client visited an advertiser’s web site by clicking the ad link of a

publisher. One week later, the client visited the same web site again by clicking the same ad

link.

Scenario 2: The competitors or even the publishers control a botnet with thousands of

computers, each of which initiate many clicks to the ad links everyday.

Obviously, the clicks in Scenario 1 should not be considered as click fraud, while those

in Scenario 2 should be determined as click fraud. However, it is very difficult to identify

which scenario the identical clicks belong to. A reasonable countermeasure is to prescribe that

identical clicks will not count if they are within short time interval, and will count if they

happen sparsely. For instance, the advertiser and the publisher can make an agreement that

identical clicks will not count within one day or 100, 000 clicks. For example, suppose that

it is prescribed that the same click that is 4 elements away is considered as valid click. Let

< i, t > denote that a click with identifier i arrives at timestamp t. Suppose we have a stream

of clicks as < i1, 1 >,< i2, 2 >,< i3, 3 >,< i1, 4 >,< i1, 5 >, . . . Then the click < i1, 4 >

should be determined as a duplicate click. However, the click < i1, 5 > is a valid click although

www.manaraa.com

134

it is identical to the previous click, since no click with identifier i1 is counted in the previous

4 elements. Unfortunately, although detecting duplicate in a large database has been studied

by many researchers, classical duplicate detecting algorithms cannot be directly utilized to

address the problems in such scenarios.

Therefore, a feasible duplicate detecting algorithm should have a mechanism that is able

to eliminate expired data and only consider fresh information. Decaying window models are

feasible to be utilized to eliminate expired information. Although recently many algorithms

are proposed for capturing different kinds of characteristics of large data streams over decaying

window models [16, 17, 35, 50, 51, 65, 67, 104, 115, 117, 121], the problem of duplicate detection

in data streams over decaying window models still lacks efficient and effective solutions. In the

following, we will discuss a number of useful decaying window models.

5.1.2 Decaying Window Models

Decaying window models can be utilized to eliminate expired information. There are two

common types of decaying windows: count-based windows which maintain the last (most

recent) N items in the data stream, and time-based windows which maintain all items that

arrived in the last T time units. Therefore, the time span of a count-based window may vary,

while the number of items in a time-based window may change from time to time. In this

research, we mainly consider count-based windows, and our algorithms can be easily extended

to time-based windows. How to extend to time-based windows can be found in Section 5.2.1

and 5.3.1.

Landmark window: Landmark windows start and end once N elements arrive. When

processing data streams over landmark windows, a sketch can be maintained using less memory

instead of keeping all elements in current window, since all elements will expire at the same

time and we can delete the expired sketch and begin a new one.

Sliding window: A sliding window, first introduced by Datar et al. [35], only contains

the last N items, which is updated once a new element comes and an old element expires.

Since the elements in a sliding window expire one by one, usually some timing information is

www.manaraa.com

135

maintained to update the interested statistics when the window slides.

Jumping window: The jumping window model was first proposed by Zhu and Shasha

[121]. A jumping window is a compromise between the landmark window and the sliding

window. The baseline idea is to divide the entire window equally into several sub-windows, and

the statistics over the entire jumping window is based on the combination of the information

from the smaller sub-windows.

Generally speaking, maintaining stream information over landmark windows is easiest and

requires the least memory, while maintaining streaming information over sliding windows is the

most difficult and requires the most memory. However, the streaming information will have

big jump when an old landmark window expires and a new landmark window begins, while a

sliding window will provide more smooth information. For instance, if a click is in the end of

a landmark window and an identical click happens in the beginning of the following landmark

window, then this identical click will be determined as a valid click in the landmark window

model.

5.1.3 Problem Statement

We first give the definition of a duplicate click in pay-per-click streams over decaying

window models.

Definition 3. A click is classified as a duplicate click if in the current decaying window an

identical click has been determined as a valid click.

Notice that detecting duplicates over different decaying windows on the same click stream

may generate different outputs. For instance, suppose that we have a stream of clicks as

< i1, 1 >,< i2, 2 >,< i3, 3 >,< i3, 4 >,< i3, 5 >, . . . and the window size N is 3. If we apply

landmark window model, then < i3, 4 > is determined as a valid click and only < i3, 5 > is

reported as a duplicate. However, if sliding window model is utilized, then both < i3, 4 > and

< i3, 5 > will be reported as duplicates, since < i3, 3 > has been classified as a valid click and

it is in their current sliding windows.

In this research, we consider the problem stated as follows:

www.manaraa.com

136

Given limited memory and an arbitrary window size N (N elements or N time unites),

how to effectively and efficiently detect duplicates in a click stream over jumping windows or

sliding windows in one pass?

We do not consider the landmark window model since many algorithms have been proposed

which can be directly deployed to detect duplicate clicks over landmark windows.

5.1.4 Our Contributions

In this research, we are the first that address the problem of detecting duplicate clicks

in pay-per-click streams over jumping windows and sliding windows using significantly less

memory space and operations [116]. Since a naive deployment of classical Bloom filters to

jumping windows requires many memory operations, we propose an innovative GBF algorithm

using group Bloom filters which significantly reduces the memory operations when processing

click streams. Our GBF algorithm is effective and efficient over jumping windows with small

number of sub-windows.

However, in a jumping window when there are too many sub-windows, GBF algorithm still

requires many memory operations. To solve this problem, we propose a new data structure

called timing Bloom filter, which records inserted elements’ timing information. We design

a TBF algorithm based on timing Bloom filter which can process click streams over sliding

windows and jumping windows using less memory space and processing time.

One advantage of our GBF algorithm and TBF algorithm is that both of them have no

false negative. Furthermore, both theoretical analysis and experimental results show that our

algorithms are effective and efficient which can achieve low or bounded false positive rate when

detecting duplicate clicks in pay-per-click streams over jumping windows and sliding windows.

www.manaraa.com

137

5.2 Detecting Duplicates over Jumping Windows Using Group Bloom

Filters

5.2.1 GBF Algorithm Description

To detect duplicates in click streams over a landmark window, Bloom filters can be directly

deployed [75]. Each click has an predefined identifier, such as the source IP address, or the

cookie, etc. Then each click’s identifier is hashed into the Bloom filter. If a click’s identifier

is present in the Bloom filter before insertion (i.e., all corresponding bits are 1s), then it is

reported as a duplicate.

To detect duplicates in pay-per-click streams over jumping windows, a naive solution is

to evenly divide the entire jumping window into a number of sub-windows and maintain a

separate Bloom filter for each sub-window. To save operation time, all Bloom filters should

use the same set of hash functions. Suppose N is the size of the jumping window which is

divided into Q sub-windows. After the jumping window is full, there will be an expired Bloom

filter after each N
Q elements. Therefore, if we want to use the memory space of the expired

Bloom filter for the upcoming sub-window, we must clean the entire expired Bloom filter

before the first element of the upcoming sub-window can be inserted. However, considering

that cleaning an expired Bloom filter need O(m) operations, where m is the size of the Bloom

filters, we must keep the newly arrived elements in an extra queue before we finish the clean

operations. To solve this problem, we can divide the total available memory space into Q+ 1

pieces. Q pieces are for the Bloom filters of Q active sub-windows, and the additional piece is

used to maintain a Bloom filter for the elements in the upcoming sub-window while we clean

the expired Bloom filter. Then we have more time to clean the expired Bloom filter, since we

only need to clean the expired memory before the next Bloom filter expires. Let M denote the

total number of memory bits, then each Bloom filter has size m = M
Q+1 , and we only need to

clean M/(Q+1)
N/Q = QM

(Q+1)N bits when processing each newly arrived element.

When a new element comes, it is inserted into the Bloom filter of the corresponding sub-

window if and only if it is not a duplicate in the current jumping window (including all active

www.manaraa.com

138

sub-windows). To check whether it is a duplicate, we first calculate k hash values using the

element’s identifier. We then have to check each of the Q active Bloom filters (suppose the

jumping window is full) by reading the corresponding k bits. If the set of k bits in any Bloom

filter is all 1s, then this element is reported as a duplicate click; otherwise, the corresponding

k bits in the Bloom filter of the current sub-window are set to 1.

Obviously, such a duplicate-checking procedure may cost about (Q×k) memory operations,

which is very time consuming if Q is large. To solve this problem, we introduce a data structure

called Group Bloom Filters (GBF) which can significantly reduce required memory operations.

The baseline idea is that instead of dividing the entire memory into separate pieces for separate

Bloom filters, the bits with the same index in each Bloom filter are grouped together in GBF.

Then using this data structure, the CPU can visit the required bits in a bunch. For instance,

suppose that Q = 31 and the size of a word in the memory is 32 bits. Then the same bits of

the total 32 Bloom filters will be in the same word in the memory. Suppose that CPU can

read/write one 32-bit word each time, then we can fetch all bits we need using k memory reads.

After we get the k 32-bit words, we AND them into a single 32-bit word. We then mask the

bit which represents the expired Bloom filter in the word by setting the corresponding bit to

0. If the value of this word is none-zero, then the new element is a duplicate; otherwise, we

set each corresponding bit for current sub-window in the k 32-bit words to 1 and write them

back to the memory.

Figure 5.1 shows the description of our GBF algorithm to detect duplicates over jumping

windows using group Bloom filters. Each bit in GBF is initialized to 0 before processing the

date stream, and W [i] denotes the word with index i in GBF. Concurrently with the finish

of the new sub-window after processing N
Q elements, the expired Bloom filter is cleaned and

ready to insert new elements. A counter can be used to determine when a sub-window is full

and a new sub-window starts.

As an example, Figure 5.2 shows how GBF algorithm works. Let x0, x1, x2, · · · denote a

series of clicks. Suppose that the jumping window has size N = 6, which is divided into Q = 3

sub-windows, and thus each sub-window contains 2 clicks. We maintain 4 Bloom filters with

www.manaraa.com

139

Step 1: Clean Expired Bloom Filter.
Starting after last cleaned word, set the corresponding bits of the expired Bloom filter of
next QM

(Q+1)N words to 0.

Step 2: Process New Element xt.
Set temporary word W ′ to all 1s except that the bit which represents the expired Bloom
filter is set to 0.
for i← 1 to k
W ′ ←W ′ AND W [hi(xt)]

endfor
if W ′ 6= 0
xt is a duplicate click.

else
for i← 1 to k

Set the corresponding bit of the current sub-window in W [hi(xt)] to 1.
endfor

endif

Figure 5.1 GBF Algorithm Description

size m = 8, and the hash functions are h1() and h2(). Click x0 and x1 will be inserted into

the Column C1, and x2 and x3 will be inserted into the Column C2, and so on. Figure 5.2(a)

shows the status when the 11th click x10 is coming. Then x10 will be inserted into Column

C2. In the beginning, we will execute Step 1 to clean the first 4 bits ([b0 : b3]) of expired

Column C3. Then we hash x10 using h1() and h2() and get indices 7 and 4. We AND words

W [7] and W [4] together and get word W ′ = [0100]. We then mask the corresponding bit of

Column C3 which is expired, and get W ′ = [0000]. Therefore, x10 is a valid click and bit b7

and b4 in Column C2 are set to 1. The gray bits shown in Figure 5.2 indicate that these bits

are changed after processing a new element. When the 12th click x11 is coming, we first clean

the last 4 bits ([b4 : b7]) of Column C3. We then calculate and get two indices 1 and 5. This

time W ′ = [1000]. Therefore, x11 is reported as a duplicate, and not inserted into Column C2.

When the 13th click x12 is coming, notice that now Column C4 is expired and Column C3 is

entirely cleaned and ready to insert new elements.

Extension to Handle Time-Based Windows

GBF algorithm can be easily extended to handle time-based jumping windows. Instead of

www.manaraa.com

140

0 1 0 1

1 0 0 0

0 1 0 0

1 0 0 0

0 1 0 0

1 0 0 1

0 0 0 1

0 1 0 1

Expired

)(102 xh

Current

0 0 0 1

1 0 0 0

0 0 0 0

1 0 0 0

0 1 1 0

1 0 0 1

0 0 0 1

0 1 1 1

Expired

)(112 xh

Current

0 0 0 1

1 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0

1 0 0 1

0 0 0 1

0 0 1 1

Expired

)(122 xh

Current

(a) x10 is coming (b) x11 is coming (c) x12 is coming

C1C2C3C4 C1C2C3C4 C1C2C3C4

b0

b1

b2

b3

b4

b5

b6

b7

b0

b1

b2

b3

b4

b5

b6

b7

b0

b1

b2

b3

b4

b5

b6

b7)(101 xh

)(111 xh

)(121 xh

Figure 5.2 An Example of GBF Algorithm

dividing entire jumping window equally by counting elements, the time-based jumping window

is divided into Q sub-windows with same time expansion. Then each sub-window is equally

divided into R time units. In Step 1, the cleaning procedure executes once in each time unit,

and scans M
(Q+1)R entries. Step 2 stills executes once a new element comes.

5.2.2 Theoretical Analysis

When designing algorithms to detect duplicate clicks in pay-per-click streams over jumping

windows, we must consider the false negative rate and false positive rate, the memory require-

ment, and the processing time. The following theorem provides the properties of our GBF

algorithm.

Theorem 17. Let N denote the size of the jumping window, which is divided into Q sub-

windows. Given M -bit memory, and assuming that the CPU can read/write a D-bit word in

each cycle, group Bloom filters can detect duplicates over jumping windows with the following

properties:

1. The false negative rate is 0.

2. The false positive rate is O(Q · 0.6185
M
N).

www.manaraa.com

141

3. The running time to process each element is O(QD ·
M
N) in worst case.

Proof We proof the performance of GBF algorithm in terms of false negative rate, false

positive rate and running time as follows:

False Negative Rate

False negatives mean that the detection of duplicate clicks is falsely missed. According to

the definition of duplicate over decaying window models, a click is a duplicate if in current

decaying window an identical click has already been determined as a valid click. Then there

are two possible cases when checking a duplicate click xt:

Case 1: A previous identical click is accurately classified as valid click and has been

inserted into GBF.

According to GBF algorithm, since all k corresponding bits have been set to 1, then the

click xt will be reported as duplicate accurately.

Case 2: A previous identical click is falsely classified as duplicate and is not inserted into

GBF due to the inherent false positive property of Bloom filters.

In this case, it is possible that GBF algorithm determines click xt as valid. However, since

the previous valid identical click has been reported as a duplicate, such a missing detection

actually has no effect on the overall result.

False Positive Rate

To simplify the analysis, we assume that all Bloom filters of the sub-windows have the same

false positive rate f0. Since the entire jumping window with N elements is evenly divided into

Q sub-windows, then each sub-window contains n = N
Q elements. GBF algorithm divides

the total memory into Q + 1 pieces, then the size of the Bloom filters of the sub-windows

is m = M
Q+1 . Since GBF algorithm inserts an element if and only if an identical element is

not present in the current window, then actually each Bloom filter in GBF has less elements

inserted compared with a classical Bloom filter. Consequently, each Bloom filter in GBF is

similar to a classical Bloom filter with size m into which N elements are inserted, but has better

false positive rate. To simplify the analysis, we just assume that it has the same false positive

rate as a classical Bloom filter. According to equation (5.1), if all elements in a sub-window

www.manaraa.com

142

are distinct and inserted into the Bloom filter, and the number of hash functions, k, is set to

the optimal value, we get

f0 ≈ 0.6185
m
n = 0.6185

QM
(Q+1)N . (5.1)

In GBF algorithm of detecting duplicates over jumping windows using GBF, an innocent

element is falsely reported as a duplicate if and only if it is present in any of the Q active

Bloom filters. Suppose that all Q sub-windows are active, and let f ′ denote the false positive

rate of the most recent Bloom filter which may be not full. Then we have

fGBF ≈ 1− (1− f0)Q−1 · f ′ ≈ 1− (1− f0)Q (5.2)

≈ 1− (1− 0.6185
QM

(Q+1)N)Q (5.3)

≈ 1− (1− 0.6185
M
N)Q (5.4)

When 0.6185
M
N is small, we have

fGBF ≈ Q · 0.6185
M
N . (5.5)

Therefore, given M -bit memory and jumping window size N which is divided into Q sub-

windows, the false positive rate of our GBF algorithm is O(Q · 0.6185
M
N).

Running Time

As shown in the description of GBF algorithm, when a new element arrives, we only

read/write 2QM
(Q+1)N words or 2QM

N bits in GBF to eliminate expired information in Step 1. Since

each time the CPU can read/write D bits, then there are O(QD ·
M
N) read/write operations.

Furthermore, to insert a new element, we only check k entries which indices are calculated by

k hash functions. Suppose that the running time to calculate a hash value is O(1), then the

running time of Step 2 is O(k) = O(MN). Therefore, the running time to process each element

is O(QD ·
M
N) in worst case.

www.manaraa.com

143

5.2.3 Comparison with Previous Work

In [75], the authors proposed to maintain a counting Bloom filter for each sub-window, and

a main Bloom filter which is a combination of all counting Bloom filters and represents the

entire jumping window. When a new sub-window is generated, the eldest window is expired

and subtracted from the main Bloom filter. Combining two counting Bloom filters is performed

by adding the corresponding counters; deleting an old counting Bloom filter is performed by

subtracting its counters from the main Bloom filter.

However, this scheme has two potential drawbacks. One is that subtracting an expired

Bloom filter from the main Bloom filter needs O(m) operations, and false positives increase if

new elements are inserted into the main Bloom filter before subtracting operation completes.

The other drawback is that this scheme may have high false positive rate, especially when the

number of sub-windows is large. There are two reasons for this drawback. First, with the

same limited available memory space, expanding bits in Bloom filters to counters make the

size of Bloom filters smaller. In worst case, the maximum value in the counters of counting

Bloom filters is N
Q , and the maximum value in the counters of the main Bloom filter is N .

Therefore, each counter must have enough bits to avoid saturation, which will generate both

false negatives and false positives. Consequently, the size of the Bloom filters in their algorithm

is much smaller than the size of Bloom filters in our GBF algorithm. According to equation

(5.1), the false positive rate will be much higher than that of GBF algorithm. Second, checking

the presence of an element in the main Bloom filter which is the result of combination of all

counting Bloom filters will generate very high false positive rate, since it is as if all N elements

are inserted into the single main Bloom filter (any entry with a non-zero value in any counting

Bloom filter will set the corresponding entry in the main Bloom filter to non-zero). On the

contrary, each Bloom filter in GBF algorithm is only inserted at most N
Q elements.

Figure 5.3 shows the comparison between the algorithm in [75] and our GBF algorithm.

We draw the false positive rate when Q = 31, m = 220, and N increases from 215 to 221.

We make the observation that with the increasing window size, the false positive rate of the

algorithm in [75] increases more quickly compared with GBF algorithm when both algorithms

www.manaraa.com

144

maintain Bloom filters with the same size. For instance, when N = 220, the false positive rate

of the algorithm in [75] is about 0.62, while the false positive rate of GBF algorithm is only

about 0.000011. Notice that when both algorithms maintain Bloom filters with the same size,

the algorithm in [75] requires more memory space since its Bloom filters are counting Bloom

filters which contain more bits in each entry.

Comparison of False Positive Rate

0

0.2

0.4

0.6

0.8

1

15 16 17 18 19 20 21
log(N)

Fa
ls

e
Po

si
tiv

e
R

at
e

Previous Algorithm

GBF Algorithm

Figure 5.3 Comparison Between Previous Algorithm and GBF Algorithm

5.3 Detecting Duplicates over Sliding Windows Using Timing Bloom

Filters

GBF algorithm works well over jumping windows with small number of sub-windows. How-

ever, there is a limitation of GBF algorithm that it is not feasible in the sliding window model,

or when the number of sub-windows Q is very large in a jumping window. In sliding windows,

although we can keep N Bloom filters, each of which only hold one element, maintaining N

Bloom filters make the running time unacceptable. For instance, suppose the window size

N = 220, and the CPU can read/write 64 bits per cycle. Before an element is inserted into the

Bloom filter for that sub-window, 16384·k reads must be executed, where k denotes the number

of hash functions. Therefore, the GBF algorithm cannot process high-speed click streams over

sliding windows or jumping windows with large number of sub-windows. We hence devise an

innovative TBF algorithm based on a new data structure called Timing Bloom Filters (TBF)

to detect duplicate clicks over sliding windows and jumping windows with large number of

sub-windows.

www.manaraa.com

145

5.3.1 TBF Algorithm Description

We propose a new data structure called timing Bloom filters which contain timing infor-

mation derived from classical Bloom filters. The timing information contained in TBF can be

utilized to evict stale data out of our data structure, and make TBF applicable to process data

streams over sliding windows. Let N denote the sliding window size. An existing element is

called active if it is one of the most recent N elements within the current window, or expired if

it left the current window. For each element xi, an index posi is used to record its timestamp

(i.e., position) in the data stream, which is an indicator of “active” or “expired” by comparing

with pos – the position index of the most recent element.

Our new data structure TBF is based on Bloom filters. To insert timing information into

TBF, each bit in the classical Bloom filter is replaced by an entry with O(logN) bits. At the

beginning of the click stream, all bits in all entries of the TBF are initialized to bit 1. When

a new element arrives, we first calculate the k hash functions and get (at most) k indices. We

then check the corresponding k entries to judge if this element is both present1 in the TBF

and active2 in the current sliding window. If it is present and active, then we just ignore it and

report it as a duplicate click; otherwise, we set the corresponding k entries using this element’s

timestamp. The timestamps are represented by wraparound counters, and the number of bits

in each entry of TBF is set to be large enough such that no timestamp is represented by all 1s.

Our TBF algorithm has two steps when a new element arrives. Step 1 deletes expired

information in TBF; Step 2 processes the new element. When a new element xt comes, the

current timestamp pos is updated. Usually there is an old element expired (except at the

beginning of the click stream when the sliding window is not full). Therefore, besides processing

the new arriving element, the expired timestamps in the TBF must be removed, which means

TBF algorithm only maintains the timestamps of active elements in the current window. To

bound the bits to represent the timestamp in the continuous click stream, we have to use a

wraparound counter. We first consider the scenario that we use a wraparound counter with

maximum N−1 to represent the timestamps, that is, the N -th element’s timestamp is 0 instead
1“Present” means no entry in the k corresponding entries is all 1s.
2“Active” means all timestamps in these k corresponding entries are within the current sliding window.

www.manaraa.com

146

of N . Suppose the newly arrived element’s timestamp is P , then in this scenario the expired

element also has timestamp P . Therefore, before inserting the new element into the TBF,

we must first remove these expired timestamps if they have been inserted before. However,

since the expired element is not maintained in memory, we have no knowledge about where

the potential k expired timestamps are in the TBF. Consequently, we must scan the entire

TBF with m entries to find these expired timestamps and replace them by all 1s. Since this is

time consuming which needs O(m) operations, such an algorithm cannot process high-speed

click streams. We therefore propose an advanced update mechanism which only uses O(mN)

operations and only consumes very small additional space.

In our update mechanism, instead of setting N−1 as the maximum value in the wraparound

counter, we set N + C − 2 as the maximum timestamp, where C is a positive integer. Since

now we expand the range of timestamp representation, we get extra time to remove stale

timestamps and thus less entries in TBF need to be scanned each time. As discussed above, if

C = 1, we have to scan entire m entries when processing each new element. If C = 2, we only

need to scan half of the m entries. Therefore, when a new element arrives, we only need to

check m
C entries in TBF. The entire TBF will be scanned thoroughly after C elements arrive.

The choice of value of C is flexible. Since dlog(N +C)e is the number of bits in an entry to

represent timestamps, and m
C is the number of entries that need to be scanned per element to

update the TBF, then a smaller C means less space requirement and larger operation time, and

a larger C means larger space requirement and less operation time. In the following analysis

and experiments, we typically choose C equal to N .

Figure 5.4 shows the description of TBF algorithm to detect duplicates over sliding windows

using timing Bloom filters. In the algorithm description, ipre is initialized to 0 before processing

the click stream, which records the index of entry that has been scanned previously; P [i] denotes

the timing information (i.e. position or timestamp) in entry i of TBF; flagdup indicates whether

the newly arrived element is a duplicate or not.

As an example, Figure 5.5 shows how TBF algorithm works. Let x0, x1, x2, x3, x4, x5, · · ·

denote a series of clicks. Suppose that the sliding window has size N = 4. We maintain a TBF

www.manaraa.com

147

Step 1: Delete Expired Information.
pos← (pos+ 1) mod (N+C−1)

for i← ipre to ipre + m
C

if (pos− P [i mod m]) mod (N+C−1) ≥ N
P [i mod m]← [11...1]

endif
endfor
ipre ← (ipre + m

C) mod m

Step 2: Process New Element xt.
flagdup ← 1
for i← 1 to k

if P [hi(xt)] = [11...1]
or (pos− P [hi(xt)]) mod (N+C−1) ≥ N

flagdup ← 0
break

endif
endfor
if flagdup = 1
xt is a duplicate click.

else
for i← 1 to k
P [hi(xt)]← pos

endfor
endif

Figure 5.4 TBF Algorithm Description

www.manaraa.com

148

0 0 1

0 0 0

0 0 1

0 1 1

0 1 0

1 1 1

0 1 1

0 0 0

)(42 xh

(a) x4 is coming

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

P[7]

)(41 xh

0 0 1

1 1 1

0 0 1

0 1 1

0 1 0

1 1 1

0 1 1

0 0 0

)(52 xh

(b) x5 is coming

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

P[7]

)(51 xh 1 0 1

1 1 1

1 1 1

0 1 1

0 1 0

1 0 1

0 1 1

0 0 0)(62 xh

(c) x6 is coming

P[0]

P[1]

P[2]

P[3]

P[4]

P[5]

P[6]

P[7]

)(61 xh

Figure 5.5 An Example of TBF Algorithm

with size m = 8, and each entry has 3 bits. The hash functions are h1() and h2(). We set

C = 4, which means we only need to scan and update 2 entries when processing each element.

Figure 5.5(a) shows the status when the 5th click x4 is coming. Notice that all entries with

position [000] are expired. In the beginning, we execute Step 1 to scan the first 2 entries, and

P [1] is set to all 1s. Then we hash x4 using h1() and h2() and get indices 6 and 4. Since both

P [6] and P [4] are present and active, x4 is reported as a duplicate. The gray entries shown

in Figure 5.5 indicate that these entries are changed after processing a new element. When

the 6th click x5 is coming, we first scan entries P [2] and P [3], and this time P [2] is set to all

1s. We then calculate and get two indices 0 and 5. Since P [0] = [001] is expired and P [5] is

all 1s, x5 is determined as a valid click, and its position information is inserted into P [0] and

P [5]. Notice that although P [7] = [000] has been expired after x4 comes, it may remain in

the memory until x7 comes. However, its presence does not affect duplicate detection in TBF

algorithm.

Extension to Handle Time-Based Windows

TBF algorithm can be easily extended to handle time-based sliding windows. Suppose the

entire sliding window is equally divided into R time units. In Step 1, the cleaning procedure

executes once in each time unit, and scans m
R entries. Step 2 stills executes once a newly

www.manaraa.com

149

arrived element comes. However, instead of inserting the counting-based position, the time

unit information is inserted into the entries of TBF.

Furthermore, TBF can also be easily extended to handle jumping windows. If TBF is

utilized over a jumping window which is evenly divided into Q sub-windows, then all elements

in the same sub-window will have the same timestamp, and they will be eliminated from TBF

simultaneously. When Q is large, GBF cannot process the click stream efficiently, and TBF is

a better choice.

5.3.2 Theoretical Analysis

The following theorem provides the properties of our TBF algorithm when detecting du-

plicate clicks in pay-per-click streams over sliding windows.

Theorem 18. Let N denote the size of the sliding window. Given M -bit memory, timing

Bloom filters can detect duplicates over sliding windows with the following properties:

1. The false negative rate is 0.

2. The false positive rate is O(0.6185
M

N logN).

3. The running time to process each element is O(M
N logN) in worst case.

proof We proof the performance of TBF algorithm in terms of false negative rate, false

positive rate and running time as follows:

False Negative Rate

Since the proof is similar to that in Theorem 17, we skip this part to save space.

False Positive Rate

As shown in TBF algorithm description, TBF only keeps the timestamps of the most recent

N elements, and all expired timestamps will be removed in time. Therefore, in worst case there

are N distinct elements’ timestamps present in TBF when we process a newly arrived element.3

Since TBF algorithm inserts an element if and only if an identical element is not present in

the current window, then actually TBF has less elements inserted compared with a classical
3Although some expired timestamps can survive in TBF for a certain time before they are cleaned, they do

not affect the result when determining whether a new element is a duplicate or not.

www.manaraa.com

150

Bloom filter. Consequently, TBF is similar to a classical Bloom filter with size m into which N

elements are inserted, but should have better false positive rate. To simplify the analysis, we

just assume that TBF has the same false positive rate as a classical Bloom filter. Suppose that

we set C = N , then each entry occupies dlog 2Ne bits, and m = M
dlog 2Ne . Similar to equation

(5.1), when the number of hash functions, k, is set to the optimal value, the false positive rate

of TBF is

fTBF ≈ 0.6185
m
N ≈ 0.6185

M
N log 2N . (5.6)

Therefore, the false positive rate of TBF is O(0.6185
M

N logN).

Running Time

As shown in our TBF algorithm description, each time when a new element arrives, we only

remove expired timestamps in TBF by scanning m
C entries in Step 1. Generally C is O(N),

and O(mC) = O(M
N logN). Furthermore, to insert a new element, we only check k entries which

indices are calculated by k hash functions. Assuming that the running time to calculate a hash

value is O(1), then the running time of Step 2 is O(k) = O(M
N logN). Therefore, the running

time to process each element is O(M
N logN) in worst case.

5.4 Experimental Evaluation

False Positive Rate of GBF Algorithm over Jumping Windows

0.001

0.01

0.1

1
4 5 6 7 8 9 10

Number of Hash Functions

Fa
ls

e
Po

si
tiv

e
R

at
e

Theoretical Result
Experimental Result

(a) False Positive Rate of GBF

False Positive Rate of TBF Algorithm over Sliding Windows

0.0001

0.001

0.01

0.1
4 5 6 7 8 9 10

Number of Hash Functions

Fa
ls

e
Po

si
tiv

e
R

at
e

Theoretical Result
Experimental Result

(b) False Positive Rate of TBF

Figure 5.6 False Positive Rate of GBF and TBF Algorithm over Sliding
Windows

In this section, we evaluate GBF algorithm and TBF algorithm for duplicate click detection

over jumping windows and sliding windows. Since our algorithms have no false negative, we

www.manaraa.com

151

only ran experiments to evaluate the false positive rate of our algorithms. Hence, we simulate

our algorithms by processing synthetic click streams which have no duplicate click.

We first consider the theoretical results. Our algorithms are a little different comparing

with the classical Bloom filters. In our algorithms, we only insert an element if and only if an

identical element is not present in the current window. Therefore, let f denote the false positive

rate of our algorithm, and then only about (1 − f)N expected elements are inserted. In our

GBF algorithm for jumping windows, let f0 denote the false positive rate of the sub-windows,

and fGBF denote the overall false positive rate. Then

fGBF ≈ 1− (1− f0)Q (5.7)

≈ 1− (1− (1− e−(1−fGBF)kn/m)k)Q (5.8)

≈ 1− (1− (1− e−(1−fGBF) kN
Qm)k)Q (5.9)

For given k, if we set

m =
(1− 2−k)QkN

Q ln 2
, (5.10)

then

fGBF ≈ 1− (1− 2−k)Q. (5.11)

In our TBF algorithm for sliding windows, let fTBF denote the overall false positive rate.

Then

fTBF ≈ (1− e−(1−fTBF)kN/m)k. (5.12)

For given k, if we set

m =
(1− 2−k)kN

ln 2
, (5.13)

then

fTBF ≈ 2−k. (5.14)

In the experiments of evaluating our GBF algorithm over jumping windows, we set the

jumping window size to N = 220, and the number of sub-windows to Q = 8. For given k,

www.manaraa.com

152

the size m of each Bloom filter is set using equation (5.10). We generated 20 · N distinct

click identifiers. We counted the false positives within the last 10 ·N clicks to make sure that

GBF has been stable. Figure 5.6(a) shows the theoretical and experimental results. We make

the observation that the experimental result of GBF algorithm is very close to the theoretical

result when detecting duplicates over jumping windows. When k = 10 and m = 1, 876, 246,

the false positive rate is only about 0.007.

In the experiments of evaluating our TBF algorithm over sliding windows, we set the sliding

window size to N = 220. For given k, the size m of TBF is set using equation (5.13). We

generated 20 ·N distinct click identifiers, and counted the false positives within the last 10 ·N

clicks to make sure that the TBF has been stable. Figure 5.6(b) shows the theoretical and

experimental results. We make the observation that the experimental result of TBF algorithm

is very close to the theoretical result when detecting duplicate clicks over sliding windows.

When k = 10 and m = 15, 112, 980, the false positive rate is only about 0.001.

5.5 Conclusions

In this research, we address the problem of detecting duplicate clicks in pay-per-click

streams over jumping windows and sliding windows. We propose group Bloom filters which

significantly reduces the memory operations when processing click streams, and our GBF algo-

rithm based on group Bloom filters is effective and efficient over jumping windows. To detect

duplicate clicks over sliding windows and jumping windows with large number of sub-windows,

we propose an innovative TBF algorithm based on a new data structure called timing Bloom

filter, which can process click streams over sliding windows using less memory space and pro-

cessing time. Both theoretical analysis and experimental results show that our algorithms are

effective and efficient in terms of false negative rate, false positive rate and running time when

detecting duplicate clicks in pay-per-click streams.

In the future, we will continue to explore the issues of click fraud and click quality under

data stream models. We will consider various sophisticated click fraud attacks, and study

advertising network dynamics, new service models, economic and social impacts of click frauds.

www.manaraa.com

153

CHAPTER 6. SUMMARY

6.1 Conclusion

In this dissertation, we design effective techniques for detecting and attributing cyber crim-

inals. We consider two kinds of fundamental techniques: forensics-sound attack monitoring

and traceback, and forensics-sound online fraud detection. Our proposed techniques may serve

as fundamental components which can be widely utilized not only in network security, but

also in many other domains, such as database, data mining, computer graphics, etc. The

contributions of our research are as follows:

(1) We propose several innovative algorithms which answer some open problems in fun-

damental statistics estimation over sliding windows. Those algorithms can be used to detect

anomaly and attacks in networks. We also propose efficient and effective algorithms which can

trace back stepping stone attacks and single packet attacks.

• We study the problem of maintaining ε-approximate variance of data streams over sliding

windows. We propose the first ε-approximation algorithm that is optimal in both space

and worst case time. Our algorithm requires O(1
ε logN) space and O(1) running time in

worst case.

• We address the problem of estimating ε-approximate frequency in data streams over

sliding windows. We propose the first efficient deterministic algorithm which can achieve

O(1
ε) space requirement and only need O(1) running time to process each item in the

data stream and to answer a query.

• we consider the problem of estimating ε-approximate diameter, convex hull and skyline

in data streams over sliding windows. We first present an improved algorithm which

www.manaraa.com

154

only requires O((1
ε)

d+1
2 logR) space to estimate the diameter over sliding windows. We

then extend our algorithm to solve convex hull estimation problem. Finally, we propose

a novel algorithm to estimate skyline which requires O(1
εd

log εR) space.

• Several algorithms are proposed to attribute stepping stone attackers. Our schemes

can effectively detect stepping stones even when delay and chaff perturbations exist

simultaneously.

• A topology-aware single packet IP traceback system, namely TOPO, is proposed to

traceback single packet attacks. We design TOPO to allow partial deployment while

maintaining its traceback capability. A k-adaptive mechanism is designed which can

dynamically adjust parameters of Bloom filters to reduce the false positive rate.

(2) We propose streaming algorithms to detect click fraud in pay-per-click streams of online

advertising networks.

• We address the problem of detecting duplicate clicks in pay-per-click streams over jump-

ing windows and sliding windows, and propose two innovative algorithms that make only

one pass over click streams and require significantly less memory space and operations.

A patent [55] is pending based on our research.

6.2 Future Work

6.2.1 Data Stream Processing

Although our research in this dissertation have answered several open problems in data

stream processing, there still have many unsolved problems in this area.

Currently, basic-counting and variance estimation over sliding windows have been re-

searched and optimal algorithms were proposed. However, higher-ordered moments estimation

problems still lack efficient algorithms.

In geometric computation area, although many algorithms were presented, we still don’t

know the lower bound of high-dimensional diameter, convex hull and skyline, and thus we don’t

www.manaraa.com

155

know whether current algorithms are optimal in space requirement or not. Further research is

required in this topic.

6.2.2 Attack Traceback

There are still some open problems in attack detection and traceback.

6.2.2.1 VoIP Attribution

Like the Internet, the VoIP also provides unauthorized services. Therefore, some security

issues existing in the Internet may also appear in the VoIP systems. For instance, a phone

user may receive a call with a qualified caller ID from his/her credit card company, so he/she

would answer the critical questions about social security number and date of birth, and so on.

However, this call comes actually from an attacker who fakes the caller ID using a computer.

Compared with a PSTN phone or mobile phone, IP phone lacks monitoring. Therefore, it is

desirable to provide schemes that can attribute or trace back to the VoIP callers.

6.2.2.2 Botnet Traceback

A botnet is a network of compromised computers, or bots, commandeered by an adversarial

botmaster. Botnets usually spread with virus and communicate through Inter Relay Channel

(IRC) [29]. With the army of bots, the bot controllers can launch many attacks, such as spam,

phishing, key logging, and denial of service. Now, more and more scientists are interested in

how to detect, mitigate, and trace back botnet attacks.

6.2.2.3 Traceback in Anonymous Systems

Another issue is that a lot of anonymous systems, such as Tor [8], exist all over the world.

Tor is a toolset for anonymizing web browsing and publishing, instant messaging, IRC, SSH,

and other applications that use the TCP protocol. It provides anonymity and privacy for

legal users, and at the same time, it is a good platform to launch stepping stone attacks.

Communications over Tor are relayed through several distributed servers called onion routers.

www.manaraa.com

156

There are more than 800 onion routers all over the world so far. Since Tor may be seemed as

a special stepping stone attack platform, it is interesting to consider how to trace back attacks

over Tor.

6.2.3 Online Fraud Detection

Online auction networks, such as eBay, have attracted a lot of buyers and sellers. More

and more people begin to purchase goods and services through eBay or other online auction

networks. However, fraud transactions happen everyday. In these online auction systems, users

are often intent on doing transactions with accounts who have high feedbacks. Nevertheless,

fraudsters can easily bypass the feedback systems. One method for a fraudster to build excellent

feedback is to construct a clique and prompt each other. The cliques of accomplices can easily

prompt many fraudsters, while never jump out to cheat directly by themselves, which makes

it difficult to detect these cliques.

Two preliminary papers [87, 86] have been finished with Yanlin Peng1 and Dr. Yong Guan,

and further research is ongoing.

1Yanlin Peng did the majority work including algorithm design, implementation and writing.

www.manaraa.com

157

BIBLIOGRAPHY

[1] Internet World Stats. [Online]. Available: http://www.internetworldstats.com

[2] NLANR Trace Archive. [Online]. Available: http://pma.nlanr.net/Traces/long/

[3] LAND Attack. [Online]. Available: http://www.insecure.org/sploits/land.ip.DOS.html

[4] Ping of Death Attack. [Online]. Available: http://www.insecure.org/sploits/

ping-o-death.html

[5] Teardrop Attack. [Online]. Available: http://support.microsoft.com/kb/q179129/

[6] “CAIDA’s OC48 traces dataset.” [Online]. Available: http://www.caida.org/data/

passive/

[7] “CAIDA’s skitter project.” [Online]. Available: http://www.caida.org/tools/

measurement/skitter/

[8] “Tor system.” [Online]. Available: http://tor.eff.org

[9] “CAIDA’s Internet Topology Data Kit #0304,” Cooperative Association for Internet

Data Analysis, San Diego Supercomputer Center (SDSC), University of California, San

Diego (UCSD), 2003. [Online]. Available: http://www.caida.org/tools/measurement/

skitter/router topology/

[10] “Google click fraud settlement,” Mar. 2006. [Online]. Available: http://googleblog.

blogspot.com/pdf/lanes google final order.pdf

[11] “Yahoo click fraud settlement,” Jun. 2006. [Online]. Available: http://yhoo.client.

shareholder.com/ReleaseDetail.cfm?ReleaseID=202354

http://www.internetworldstats.com
http://pma.nlanr.net/Traces/long/
http://www.insecure.org/sploits/land.ip.DOS.html
http://www.insecure.org/sploits/ping-o-death.html
http://www.insecure.org/sploits/ping-o-death.html
http://support.microsoft.com/kb/q179129/
http://www.caida.org/data/passive/
http://www.caida.org/data/passive/
http://www.caida.org/tools/measurement/skitter/
http://www.caida.org/tools/measurement/skitter/
http://tor.eff.org
http://www.caida.org/tools/measurement/skitter/router_topology/
http://www.caida.org/tools/measurement/skitter/router_topology/
http://googleblog.blogspot.com/pdf/lanes_google_final_order.pdf
http://googleblog.blogspot.com/pdf/lanes_google_final_order.pdf
http://yhoo.client.shareholder.com/ReleaseDetail.cfm?ReleaseID=202354
http://yhoo.client.shareholder.com/ReleaseDetail.cfm?ReleaseID=202354

www.manaraa.com

158

[12] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, “Approximating extent measures

of points,” Journal of the ACM (JACM), vol. 51, no. 4, pp. 606–635, Jul. 2004.

[13] P. K. Agarwal, J. Matousěk, and S. Suri, “Farthest neighbors, maximum spanning trees

and related problems in higher dimensions,” Computational Geometry: Theory and Ap-

plications, vol. 1, no. 4, pp. 189–201, Apr. 1992.

[14] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approximating the fre-

quency moments,” in Proceedings of the 28th annual ACM symposium on Theory of

computing (STOC 1996), Philadelphia, USA, May 1996, pp. 20–29.

[15] V. Anupam, A. Mayer, K. Nissim, B. Pinkas, and M. K. Reiter, “On the security of pay-

per-click and other web advertising schemes,” in Proceedings of the 8th International

Conference on World Wide Web (WWW 1999), Toronto, Canada, May 1999.

[16] A. Arasu and G. S. Manku, “Approximate counts and quantiles over sliding windows,”

in Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems (PODS 2004), Paris, France, Jun. 2004.

[17] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan, “Maintaining variance and

k-medians over data stream windows,” in Proceedings of the 22nd ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2003), San

Diego, USA, Jun. 2003, pp. 234–243.

[18] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in data

stream systems,” in Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Sympo-

sium on Principles of Database Systems (PODS 2002), Madison, USA, Jun. 2002, pp.

1–16.

[19] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,” in Proceedings of the

17th International Conference on Data Engineering (ICDE 2001), Heidelberg, Germany,

Apr. 2001.

www.manaraa.com

159

[20] A. Belenky and N. Ansari, “IP traceback with deterministic packet marking,” IEEE

Communications Letters, vol. 7, no. 4, pp. 162–164, Apr. 2003.

[21] S. M. Bellovin, “ICMP traceback messages,” Internet Draft, 2000.

[22] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communi-

cations of the ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[23] A. Blum, D. Song, and S. Venkataraman, “Detection of interactive stepping stones:

Algorithms and confidence bounds,” in Proceedings of the 7th International Symposium

on Recent Advances in Intrusion Detection (RAID 2004), Sophia Antipolis, France, Sep.

2004.

[24] A. Broder and M. Mitzenmacher, “Network applications of Bloom filters: A survey,” in

Proceedings of the 40th Annual Allerton Conference on Communication, Control, and

Computing, Monticello, USA, Oct. 2002, pp. 636–646.

[25] H. Burch and B. Cheswick, “Tracing anonymous packets to their approximate source,”

in Proceedings of USENIX LISA 2000, New Orleans, USA, Dec. 2000, pp. 319–327.

[26] C. Busch and S. Tirthapura, “A deterministic algorithm for summarizing asynchronous

streams over sliding windows,” in Proceedings of the 24th International Symposium on

Theoretical Aspects of Computer Science (STACS 2007), Aachen, Germany, Feb. 2007.

[27] T. M. Chan, “Faster core-set constructions and data stream algorithms in fixed dimen-

sions,” in Proceedings of the 20th Annual Symposium on Computational Geometry (SoCG

2004), New York, USA, Jun. 2004, pp. 152–159.

[28] T. M. Chan and B. S. Sadjad, “Geometric optimization problems over sliding windows,”

in Proceedings of the 15th International Symposium on Algorithms and Computation

(ISAAC 2004), ser. Lecture Notes in Computer Science, vol. 3341. Hong Kong, China:

Springer, Dec. 2004, pp. 246–258.

www.manaraa.com

160

[29] S. Chang, L. Zhang, Y. Guan, and T. E. Daniels, “A framework for P2P botnets,”

in Proceedings of the 2009 International Conference on Communications and Mobile

Computing (CMC 2009), Kunming, China, Jan. 2009.

[30] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data streams,”

in Proceedings of the 29th International Colloquium on Automata, Languages, and Pro-

gramming (ICALP 2002), Malaga, Spain, Jul. 2002.

[31] B. Cheswick, H. Burch, and S. Branigan, “Mapping and visualizing the Internet,” in

Proceedings of 2000 USENIX Annual Technical Conference, San Diego, USA, Jun. 2000.

[32] K. L. Clarkson and P. W. Shor, “Applications of random sampling in computational

geometry, II,” Discrete & Computational Geometry, vol. 4, no. 1, pp. 387–421, Dec.

1989.

[33] G. Cormode and S. Muthukrishnan, “Radial histograms for spatial streams,” DIMACS,

Tech. Rep. 2003-11, 2003.

[34] ——, “What’s hot and what’s not: Tracking most frequent items dynamically,” in Pro-

ceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems (PODS 2003), San Diego, USA, Jun. 2003, pp. 296–306.

[35] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream statistics over

sliding windows,” in Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA 2002), San Francisco, USA, Jan. 2002, pp. 635–644.

[36] D. Dean, M. Franklin, and A. Stubblefield, “An algebraic approach to IP traceback,”

Information and System Security, vol. 5, no. 2, pp. 119–137, 2002.

[37] E. D. Demaine, A. López-Ortiz, and J. I. Munro, “Frequency estimation of internet packet

streams with limited space,” in Proceedings of the 10th Annual European Symposium on

Algorithms (ESA 2002), Rome, Italy, Sep. 2002, pp. 348–360.

www.manaraa.com

161

[38] F. Deng and D. Rafiei, “Approximately detecting duplicates for streaming data using

stable bloom filters,” in Proceedings of the 2006 ACM SIGMOD International Conference

on Management of Data (SIGMOD 2006), Chicago, USA, Jun. 2006.

[39] D. L. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit, and S. Staniford, “Multiscale

stepping-stone detection: Detecting pairs of jittered interactive streams by exploiting

maximum tolerable delay,” in Proceedings of the 5th International Symposium on Recent

Advances in Intrusion Detection (RAID 2002), Zurich, Switzerland, Oct. 2002.

[40] eMarketer, “Online ad spending to total $19.5 billion in 2007,” Feb. 2007. [Online].

Available: http://www.emarketer.com/Article.aspx?1004635

[41] C. Estan and G. Varghese, “New directions in traffic measurement and accounting,” in

Proceedings of ACM SIGCOMM 2002, Pittsburgh, USA, Aug. 2002.

[42] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting active flows on

high speed links,” in Proceedings of the Internet Measurement Conference (IMC 2003),

Miami, USA, Oct. 2003.

[43] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scalable wide-area

Web cache sharing protocol,” IEEE/ACM Transactions on Networking, vol. 8, no. 3, pp.

281–293, 2000.

[44] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman, “Computing

iceberg queries efficiently,” in Proceedings of the 24th International Conference on Very

Large Data Bases (VLDB 1998), New York, USA, Aug. 1998.

[45] J. Feigenbaum, S. Kannan, and J. Zhang, “Computing diameter in the streaming and

sliding-window models,” Algorithmica, vol. 41, no. 1, pp. 25–41, 2004.

[46] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base applica-

tions,” Journal of Computer and System Sciences, vol. 31, no. 2, pp. 182–209, 1985.

http://www.emarketer.com/Article.aspx?1004635

www.manaraa.com

162

[47] M. Gandhi, M. Jakobsson, and J. Ratkiewicz, “Badvertisements: Stealthy click-fraud

with unwitting accessories,” Anti-Phishing and Online Fraud, Part I Journal of Digital

Forensic Practice, vol. 1, pp. 131–142, Nov. 2006.

[48] H. Garcia-Molina, J. Ullman, and J. Widom, Database Systems: The Complete Book.

Prentice Hall, 2002.

[49] P. B. Gibbons and Y. Matias, “New sampling-based summary statistics for improving

approximate query answers,” in Proceedings of the 1998 ACM SIGMOD International

Conference on Management of Data (SIGMOD 1998), Seattle, USA, Jun. 1998, pp.

331–342.

[50] P. B. Gibbons and S. Tirthapura, “Distributed streams algorithms for sliding windows,”

in Proceedings of the 14th ACM Symposium on Parallel Algorithms and Architectures

(SPAA 2002), Winnipeg, Manitoba, Canada, Aug. 2002.

[51] L. Golab, D. DeHaan, E. D. Demaine, A. López-Ortiz, and J. I. Munro, “Identifying

frequent items in sliding windows over on-line packet streams,” in Proceedings of the

Internet Measurement Conference (IMC 2003), Miami, USA, Oct. 2003.

[52] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R. Richardson, “2005 CSI/FBI computer

crime and security survey,” 2005. [Online]. Available: http://www.usdoj.gov/criminal/

cybercrime/CSI FBI.htm

[53] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet map discovery,” in Pro-

ceedings of IEEE INFOCOM 2000, Tel Aviv, Israel, Mar. 2000, pp. 1371–1380.

[54] Y. Guan and L. Zhang, “Attack traceback and attribution,” in Wiley Handbook of Science

and Technology for Homeland Security. Editor: J. G. Voeller, Wiley-Interscience.

[55] ——, “Detecting click fraud in pay-per-click streams of online advertising networks,” US

Patent Application, No. 12/187,055, Aug. 2008.

http://www.usdoj.gov/criminal/cybercrime/CSI_FBI.htm
http://www.usdoj.gov/criminal/cybercrime/CSI_FBI.htm

www.manaraa.com

163

[56] M. R. Henzinger, P. Raghavan, and S. Rajagopalan, “Computing on data streams,”

Digital Systems Research Center, Palo Alto, USA, Tech. Rep. SRC Technical Note 1998-

011, May 1998.

[57] J. Hershberger and S. Suri, “Adaptive sampling for geometric problems over data

streams,” in Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems (PODS 2004), Paris, France, Jun. 2004.

[58] B. Huffaker, D. Plummer, D. Moore, and k claffy, “Topology discovery by active probing,”

in Proceedings of the 2002 Symposium on Applications and the Internet (SAINT 2002),

Nara, Japan, Jan. 2002.

[59] P. Indyk, “Better algorithms for high-dimensional proximity problems via asymmetric

embeddings,” in Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA 2003), Baltimore, USA, Jan. 2003, pp. 539–545.

[60] Internet Advertising Bureau of United Kingdom, “IAB online adspend study,” 2006.

[Online]. Available: http://www.iabuk.net/en/1/iabknowledgebankadspend.html

[61] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algorithm for finding fre-

quent elements in streams and bags,” ACM Transactions on Database Systems (TODS),

vol. 28, no. 1, pp. 51–55, Mar. 2003.

[62] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: an online algorithm

for skyline queries,” in Proceedings of the 28th International Conference on Very Large

Data Bases (VLDB 2002), Hong Kong, China, Aug. 2002.

[63] H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of a set of vectors,”

Journal of the ACM (JACM), vol. 22, no. 4, pp. 469–476, Oct. 1975.

[64] L. Lee and H. Ting, “Maintaining significant stream statistics over sliding windows,” in

Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA

2006), Miami, USA, Jan. 2006.

http://www.iabuk.net/en/1/iabknowledgebankadspend.html

www.manaraa.com

164

[65] ——, “A simpler and more efficient deterministic scheme for finding frequent items over

sliding windows,” in Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART Sympo-

sium on Principles of Database Systems (PODS 2006), Chicago, USA, Jun. 2006.

[66] J. Li, M. Sung, J. Xu, and L. Li, “Large-scale IP traceback in high-speed internet: Prac-

tical techniques and theoretical foundation,” in Proceedings of 2004 IEEE Symposium

on Security and Privacy, Oakland, USA, May 2004.

[67] X. Lin, H. Lu, J. Xu, and J. X. Yu, “Continuously maintaining quantile summaries of

the most recent N elements over a data stream,” in Proceedings of the 20th International

Conference on Data Engineering (ICDE 2004), Boston, USA, Mar. 2004.

[68] X. Lin, Y. Yuan, W. Wang, and H. Lu, “Stabbing the sky: Efficient skyline computa-

tion over sliding windows,” in Proceedings of the 21st International Conference on Data

Engineering (ICDE 2005), Tokyo, Japan, Apr. 2005.

[69] C. Lynn, W. Milliken, and W. T. Strayer, “SPIE memory requirements reduction,” BBN

Technologies, Tech. Rep. BBN REPORT-8385, Dec. 2003.

[70] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston, “Finding (recently) frequent

items in distributed data streams,” in Proceedings of the 21st International Conference

on Data Engineering (ICDE 2005), Tokyo, Japan, Apr. 2005.

[71] A. Mankin, D. Massey, C.-L. Wu, S. F. Wu, and L. Zhang, “On design and evalua-

tion of “Intention-Driven” ICMP traceback,” in Proceedings of the 10th IEEE Interna-

tional Conference on Computer Communications and Networks (ICCCN 2001), Scots-

dale, USA, Oct. 2001.

[72] G. S. Manku and R. Motwani, “Approximate frequency counts over data streams,” in

Proceedings of the 28th International Conference on Very Large Data Bases (VLDB

2002), Hong Kong, China, Aug. 2002.

[73] C. C. Mann, “How click fraud could swallow the Internet?” Jan. 2006. [Online].

Available: http://www.wired.com/wired/archive/14.01/fraud.html

http://www.wired.com/wired/archive/14.01/fraud.html

www.manaraa.com

165

[74] S. Matsuda, T. Baba, A. Hayakawa, and T. Nakamura, “Design and implementation of

unauthorized access tracing system,” in Proceedings of the 2002 Symposium on Applica-

tions and the Internet (SAINT 2002), Nara, Japan, Jan. 2002.

[75] A. Metwally, D. Agrawal, and A. E. Abbadi, “Duplicate detection in click streams,”

in Proceedings of the 14th WWW International World Wide Web Conference (WWW

2005), Chiba, Japan, May 2005.

[76] ——, “Efficient computation of frequent and top-k elements in data streams,” in Proceed-

ings of the 10th International Conference on Database Theory (ICDT 2005), Edinburgh,

Scotland, Jan. 2005.

[77] ——, “Using association rules for fraud detection in web advertising networks,” in Pro-

ceedings of the 31st International Conference on Very Large Data Bases (VLDB 2005),

Trondheim, Norway, Aug. 2005.

[78] ——, “DETECTIVES: DETEcting Coalition hiT Inflation attacks in adVertising nEt-

works Streams,” in Proceedings of the 16th WWW International World Wide Web Con-

ference (WWW 2007), Alberta, Canada, May 2007.

[79] A. Metwally, D. Agrawal, A. E. Abbadi, and Q. Zheng, “On hit inflation techniques and

detection in streams of web advertising networks,” in Proceedings of the 27th Interna-

tional Conference on Distributed Computing Systems (ICDCS 2007), Toronto, Canada,

Jun. 2007.

[80] J. Misra and D. Gries, “Finding repeated elements,” Science of Computer Programming,

vol. 2, no. 2, pp. 143–152, Nov. 1982.

[81] M. Mitzenmacher, “Compressed Bloom filters,” IEEE/ACM Transactions on Network-

ing, vol. 10, no. 5, pp. 604–612, Oct. 2002.

[82] S. Muthukrishnan, “Data streams: Algorithms and applications,” Rutgers University,

Piscataway, USA, Tech. Rep., 2003.

www.manaraa.com

166

[83] Outsell Survey, “Hot topics: Click fraud reaches $1.3 billion, dictates end of “don’t

ask, don’t tell” era,” Jun. 2006. [Online]. Available: http://www.outsellinc.com/store/

products/243

[84] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive algorithm for

skyline queries,” in Proceedings of the 2003 ACM SIGMOD International Conference on

Management of Data (SIGMOD 2003), San Diego, USA, Jun. 2003.

[85] K. Park and H. Lee, “On the effectiveness of probabilistic packet marking for IP traceback

under denial of service attack,” in Proceedings of IEEE INFOCOM 2001, Anchorage,

USA, Apr. 2001, pp. 338–347.

[86] Y. Peng, L. Zhang, and Y. Guan, “Combating malicious-script-generating click frauds,”

submitted to the 30th IEEE Symposium on Security and Privacy (S&P 2009).

[87] ——, “An effective fraud detection method for Internet auction systems,” in Proceed-

ings of the 5th Annual IFIP Working Group 11.9 International Conference on Digital

Forensics, Orlando, USA, Jan. 2009.

[88] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction. New

York, USA: Springer, 1985.

[89] E. A. Ramos, “An optimal deterministic algorithm for computing the diameter of a

three-dimensional point set,” Discrete & Computational Geometry, vol. 26, no. 2, pp.

233–244, 2001.

[90] M. K. Reiter, V. Anupam, and A. Mayer, “Detecting hit shaving in click-through payment

schemes,” in Proceedings of the 3rd USENIX Workshop on Electronic Commerce, Boston,

USA, Aug. 1998, pp. 155–166.

[91] R. Richardson, “2008 CSI computer crime & security survey,” 2008. [Online]. Available:

http://www.gocsi.com/forms/csi survey.jhtml

http://www.outsellinc.com/store/products/243
http://www.outsellinc.com/store/products/243
http://www.gocsi.com/forms/csi_survey.jhtml

www.manaraa.com

167

[92] T. J. Richardson, “Approximation of planar convex sets from hyperplane probes,” Dis-

crete & Computational Geometry, vol. 18, no. 2, pp. 151–177, 1997.

[93] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network support for IP

traceback,” in Proceedings of ACM SIGCOMM 2000, Stockholm, Sweden, Aug. 2000,

pp. 295–306.

[94] K. Shanmugasundaram, H. Brönnimann, and N. Memon, “Payload attribution via hier-

archical Bloom filters,” in Proceedings of the 11th ACM Conference on Computer and

Communications Security (CCS 2004), Washington DC, USA, Oct. 2004.

[95] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio, B. Schwartz,

S. T. Kent, and W. T. Strayer, “Single-packet IP traceback,” IEEE/ACM Transactions

on Networking, vol. 10, no. 6, pp. 721–734, Dec. 2002.

[96] D. Song and A. Perrig, “Advanced and authenticated marking schemes for IP traceback,”

in Proceedings of IEEE INFOCOM 2001, Anchorage, USA, Apr. 2001.

[97] E. H. Spafford, “OPUS: Preventing weak password choices,” Computers & Security,

vol. 11, no. 3, pp. 273–278, May 1992.

[98] S. Staniford-Chen and L. T. Heberlein, “Holding intruders accountable on the internet,”

in Proceedings of the 1995 IEEE Symposium on Security and Privacy, Oakland, USA,

May 1995.

[99] R. Stone, “Centertrack: An IP overlay network for tracking DoS floods,” in Proceedings

of the 9th USENIX Security Symposium, Denver, USA, Aug. 2000, pp. 199–212.

[100] W. T. Strayer, C. E. Jones, I. Castineyra, J. B. Levin, and R. R. Hain, “An integrated

architecture for attack attribution,” BBN Technologies, Tech. Rep. BBN REPORT-8384,

Dec. 2003.

www.manaraa.com

168

[101] W. T. Strayer, C. E. Jones, F. Tchakountio, and R. R. Hain, “SPIE-IPv6: Single IPv6

packet traceback,” in Proceedings of the 29th IEEE Local Computer Networks Conference

(LCN 2004), Tampa, USA, Nov. 2004.

[102] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline computation,” in

Proceedings of the 27th International Conference on Very Large Data Bases (VLDB

2001), Roma, Italy, Sep. 2001.

[103] Y. Tao and D. Papadias, “Maintaining sliding window skylines on data streams,” IEEE

Transactions on Knowledge and Data Engineering archive (TKDE), vol. 18, no. 3, pp.

377–391, Mar. 2006.

[104] S. Tirthapura, B. Xu, and C. Busch, “Sketching asynchronous streams over sliding win-

dows,” in Proceedings of the 25th ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing (PODC 2006), Denver, USA, Jul. 2006.

[105] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum, “New streaming algorithms

for fast detection of superspreaders,” in Proceedings of Network and Distributed Systems

Security Symposium (NDSS 2005), San Diego, USA, Feb. 2005.

[106] X. Wang and D. S. Reeves, “Robust correlation of encrypted attack traffic through

stepping stones by manipulation of interpacket delays,” in Proceedings of the 10th ACM

Conference on Computer and Communications Security (CCS 2003), Washington DC,

USA, Oct. 2003.

[107] X. Wang, D. S. Reeves, and S. F. Wu, “Inter-packet delay based correlation for tracing

encrypted connections through stepping stones,” in Proceedings of the 7th European

Symposium on Research in Computer Security (ESORICS 2002), Zurich, Switzerland,

Oct. 2002.

[108] X. Wang, D. S. Reeves, S. F. Wu, and J. Yuill, “Sleepy watermark tracing: An active

network-based intrusion response framework,” in Proceedings of the 16th International

Conference on Information Security (IFIP/Sec 2001), Paris, France, Jun. 2001.

www.manaraa.com

169

[109] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-time probabilistic

counting algorithm for database applications,” ACM Transactions on Database Systems

(TODS), vol. 15, no. 2, pp. 208–229, Jun. 1990.

[110] S. F. Wu, L. Zhang, D. Massey, and A. Mankin, “Intention-Driven ICMP trace-back,”

Internet Draft, 2001.

[111] J. Xin, L. Zhang, B. Aswegan, J. Dickerson, J. Dickerson, T. Daniels, and Y. Guan, “A

testbed for evaluation and analysis of stepping stone attack attribution techniques,” in

Proceedings of 2nd International IEEE/Create-Net Conference on Testbeds and Research

Infrastructures for the Development of Networks and Communities (TridentCom 2006),

Barcelona, Spain, Mar. 2006.

[112] J. Xin, L. Zhang, T. Daniels, J. Dickerson, and Y. Guan, “A merge/split robust scheme

for attributing stepping stone attacks in real-world networked systems,” to be submitted.

[113] K. Yoda and H. Etoh, “Finding a connection chain for tracing intruders,” in Proceedings

of the 6th European Symposium on Research in Computer Security (ESORICS 2000),

Toulouse, France, Oct. 2000.

[114] L. Zhang and Y. Guan, “TOPO: A topology-aware single packet attack traceback

scheme,” in Proceedings of the 2nd IEEE Communications Society/CreateNet Interna-

tional Conference on Security and Privacy in Communication Networks (SecureComm

2006), Baltimore, USA, Aug. 2006.

[115] ——, “Variance estimation over sliding windows,” in Proceedings of the 26th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS

2007), Beijing, China, Jun. 2007.

[116] ——, “Detecting click fraud in pay-per-click streams of online advertising networks,”

in Proceedings of the 28th International Conference on Distributed Computing Systems

(ICDCS 2008), Beijing, China, Jun. 2008.

www.manaraa.com

170

[117] ——, “Frequency estimation over sliding windows,” in Proceedings of the 24th Interna-

tional Conference on Data Engineering (ICDE 2008), Cancun, Mexico, Apr. 2008.

[118] L. Zhang, A. G. Persaud, A. Johnson, and Y. Guan, “Detection of stepping stone attack

under delay and chaff perturbations,” in Proceedings of the 25th IEEE International Per-

formance Computing and Communications Conference (IPCCC 2006), Phoenix, USA,

Apr. 2006.

[119] Y. Zhang and V. Paxson, “Detecting stepping stones,” in Proceedings of the 9th USENIX

Security Symposium, Denver, USA, Aug. 2000, pp. 171–184.

[120] Q. Zhao, A. Kumar, and J. Xu, “Joint streaming and sampling techniques for accurate

identification of super sources/destinations,” in Proceedings of the Internet Measurement

Conference (IMC 2005), Berkeley, USA, Oct. 2005, pp. 77–90.

[121] Y. Zhu and D. Shasha, “StatStream: Statistical monitoring of thousands of data streams

in real time,” in Proceedings of the 28th International Conference on Very Large Data

Bases (VLDB 2002), Hong Kong, China, Aug. 2002.

	2008
	Effective techniques for detecting and attributing cyber criminals
	Linfeng Zhang
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. OVERVIEW
	1.1 Introduction
	1.2 A Motivating Scenario
	1.3 Objectives
	1.3.1 Forensics-Sound Attack Monitoring and Traceback Techniques
	1.3.2 Forensics-Sound Online Fraud Detection Techniques

	1.4 Contributions
	1.5 Dissertation Organization

	2. LITERATURE REVIEW
	2.1 Data Processing over Data Stream Models
	2.1.1 Variance Estimation
	2.1.2 Frequency Estimation
	2.1.3 Geometric Estimation

	2.2 Attack Traceback
	2.2.1 Stepping Stone Attack Attribution
	2.2.2 IP Traceback

	2.3 Online Fraud Detection
	2.3.1 Duplicate Detection
	2.3.2 Online Advertising Fraud Detection

	3. RESEARCH IN ATTACK ATTRIBUTION PART I: MONITORING TECHNIQUES
	3.1 Variance Estimation over Sliding Windows
	3.1.1 Introduction
	3.1.2 Algorithm
	3.1.3 Conclusions

	3.2 Frequency Estimation over Sliding Windows
	3.2.1 Introduction
	3.2.2 SNAPSHOT Algorithms
	3.2.3 Experimental Evaluation
	3.2.4 Extensions
	3.2.5 Conclusions

	3.3 Geometric Estimation over Sliding Windows
	3.3.1 Introduction
	3.3.2 Diameter Algorithm
	3.3.3 Convex Hull Estimation
	3.3.4 Skyline Algorithm
	3.3.5 Conclusions

	4. RESEARCH IN ATTACK ATTRIBUTION PART II: TRACEBACK TECHNIQUES
	4.1 Stepping Stone Attack Attribution
	4.1.1 Introduction
	4.1.2 Problem Definition
	4.1.3 Our Schemes
	4.1.4 Experimental Evaluation
	4.1.5 Conclusion

	4.2 Topology-aware Single Packet Attack Traceback
	4.2.1 Introduction
	4.2.2 Problems and Goals
	4.2.3 System Description
	4.2.4 Theoretical Analysis and Experimental Evaluation
	4.2.5 Further Discussions
	4.2.6 Conclusion

	5. RESEARCH IN ONLINE FRAUD DETECTION
	5.1 Introduction
	5.1.1 Motivation
	5.1.2 Decaying Window Models
	5.1.3 Problem Statement
	5.1.4 Our Contributions

	5.2 Detecting Duplicates over Jumping Windows Using Group Bloom Filters
	5.2.1 GBF Algorithm Description
	5.2.2 Theoretical Analysis
	5.2.3 Comparison with Previous Work

	5.3 Detecting Duplicates over Sliding Windows Using Timing Bloom Filters
	5.3.1 TBF Algorithm Description
	5.3.2 Theoretical Analysis

	5.4 Experimental Evaluation
	5.5 Conclusions

	6. SUMMARY
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Data Stream Processing
	6.2.2 Attack Traceback
	6.2.3 Online Fraud Detection

	BIBLIOGRAPHY

